PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Emissions of Air Pollutants in European Union Countries – Multidimensional Data Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Emisja zanieczyszczeń powietrza w krajach Unii Europejskiej – wielowymiarowa analiza danych
Języki publikacji
EN
Abstrakty
EN
The main purpose of the paper was to show the level of air pollution and its relation to economic development in the European Union countries. All European Union member states were selected for research purposefully. The research period concerned the years 2005-2016. Data was obtained from EUROSTAT and from the literature on the subject. For the analysis and presentation of materials, descriptive, tabular, graphical and gradual data analysis methods were used, including overrepresentation maps and Pearson's linear correlation coefficients. The issue of emissions of air pollutants is crucial because harmful substances contribute to the emergence of many diseases and increased mortality of society. The article focuses on harmful compounds that are subject to emission limits, i.e. sulfur dioxide (SO2), nitrous oxide (NOx), emissions of non-methane volatile organic compounds (NMVOC), ammonia (NH3) emissions and PM2.5 fraction dust. Nitrogen oxides and non-methane volatile organic compounds were the most emitted in the EU. The smallest emission was for PM2.5. In the years 2005-2016, sulfur oxide emissions decreased the fastest, while emissions of ammonia and PM2.5 dust increased. Taking into account all five pollutants, the ranking of countries meeting the emission obligations against the EU background is presented. Greece, Croatia and Belgium were the best in this area, while Hungary, Latvia and Germany were the worst. A positive relationship was found between the strength of changes in the level of GDP and the emission of air pollutants. In the EU countries, in the years 2005-2016, regularities between the level of economic development and pollution emissions in line with the environmental Kuznets curve were confirmed. In the economically developed EU countries, despite the pressure of economic development, there was a reduction in air pollution.
PL
Celem głównym pracy było ukazanie poziomu zanieczyszczenia powietrza i jego związku z rozwojem gospodarczym w krajach Unii Europejskiej. W sposób celowy wybrano do badań wszystkie kraje członkowskie Unii Europejskiej. Okres badań dotyczył lat 2005-2016. Dane pozyskano z EUROSTAT oraz z literatury przedmiotu. Do analizy i prezentacji materiałów zastosowano metody opisową, tabelaryczną, graficzną, gradacyjną analizę danych, w tym mapy nadreprezentacji, współczynniki korelacji liniowej Pearsona. Problematyka emisji zanieczyszczeń powietrza jest kluczowa, gdyż szkodliwe substancje przyczyniają się do powstawania wielu chorób oraz zwiększonej śmiertelności społeczeństwa. W artykule skupiono się na szkodliwych związkach, które podlegają limitom emisji, a więc dwutlenku siarki (SO2), tlenku azotu (NOx), emisji niemetanowych lotnych związków organicznych (NMLZO), emisji amoniaku (NH3) i pyłów frakcji PM2.5 (PM2.5). W UE najwięcej emitowano tlenków azotu i niemetanowych lotnych związków organicznych. Najmniejsza zaś była emisja pyłów frakcji PM2,5. W latach 2005-2016 najszybciej spadała emisja tlenków siarki, zaś rosła amoniaku i pyłów frakcji PM2,5. Przy uwzględnieniu wszystkich pięciu związków zanieczyszczających powietrze przedstawiono ranking krajów wywiązujących się z obowiązków emisji na tle UE. Najlepiej w tym zakresie radziły sobie Grecja, Chorwacji i Belgia, zaś najgorzej Węgry, Łotwa i Niemcy. Stwierdzono dodatnią zależność między siłą zmian poziomu PKB a emisją zanieczyszczeń powietrza. W krajach UE w latach 2005-2016 potwierdzone zostały prawidłowości między poziomem rozwoju gospodarki i emisją zanieczyszczeń zgodne ze środowiskową krzywą Kuznetsa. W rozwiniętych gospodarczo krajach UE mimo presji rozwoju gospodarczego następowała redukcja zanieczyszczeń powietrza.
Rocznik
Strony
987--1000
Opis fizyczny
Bibliogr. 38 poz., tab., rys.
Twórcy
  • Warsaw University of Life Sciences – SGGW, Poland
autor
  • Warsaw University of Life Sciences – SGGW, Poland
  • Warsaw University of Life Sciences – SGGW, Poland
Bibliografia
  • 1. Al-Mulali, U., Saboori, B., & Ozturk, I. (2015). Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy, 76, 123-131.
  • 2. Ambient air pollution: A global assessment of exposure and burden of disease. (2016). World Health Organization, Geneva.
  • 3. Andreoni, J., Levinson, A. (2001). The simple analytics of the environmental Kuznets curve. Journal of public economics, 80(2), 269-286.
  • 4. Ansuategi, A., Barbier E.B., Perrings, C.A. (1998). The Environmental Kuznets Curve, van den Bergh J.C.J.M., Hofkes M.W. (eds), Theory and Implementation of Economic Models for Sustainable Development, Kluwer Academic Publishers. Brimblecombe, P. (1977). London air pollution, 1500-1900. Atmospheric Environment (1967), 11(12), 1157-1162.
  • 5. Apergis, N., Ozturk, I. (2015). Testing environmental Kuznets curve hypothesis in Asian countries. Ecological Indicators, 52, 16-22.
  • 6. Brunekreef, B., Holgate, S.T. (2002). Air pollution and health. The lancet, 360(9341), 1233-1242.
  • 7. Cepeda, M., Schoufour, J., Freak-Poli, R., Koolhaas, C.M., Dhana, K., Bramer, W. M., Franco, O.H. (2017). Levels of ambient air pollution according to mode of transport: a systematic review. The Lancet Public Health, 2(1), 23-34.
  • 8. Cheremisinoff, P. (Ed.) (2018). Air pollution control and design for industry. Routledge, New York.
  • 9. Ciok, A., Kowalczyk, T., Pleszczyńska, E., Szczesny, W. (1995) Algorithms of grade correspondence-cluster analysis. The Collected Papers on Theoretical and Applied Computer Science, 7(1-4), 5-22.
  • 10. Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Lalit Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., PopeIII, C.A., Shin, H., Straif, K. Shaddick, G., Thomas, M.. van Dingenen, R., van Donkelaar A., Vos, T., Murray, CH.J.L., Forouzanfar, M.H. Feigin, V. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907-1918.
  • 11. Cole, M.A. (2003). Development, trade, and the environment: How robust is the environmental Kuznets curve? Environment and Development Economics, 8(4), 557-580.
  • 12. Dasgupta, S., Laplante, B., Wang, H., Wheeler, D. (2002). Confronting the environmental Kuznets curve. Journal of economic perspectives, 16(1), 147-168.
  • 13. Dinda, S. (2004). Environmental Kuznets curve hypothesis: a survey. Ecological economics, 49(4), 431-455.
  • 14. Dockery, D.W., Pope, C.A., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E Ferris, B.G., Speizer, F.E. (1993). An association between air pollution and mortality in six US cities. New England journal of medicine, 329(24), 1753-1759.
  • 15. Escobedo, F.J., Nowak, D.J. (2009). Spatial heterogeneity and air pollution removal by an urban forest. Landscape and urban planning, 90(3-4), 102-110.
  • 16. Frumkin, H., Frank, L., Jackson, R. (2004). Urban sprawl and public health: designing, planning and building for healthy communities. Island Press, Washington.
  • 17. Gorham, E. (1976). Acid precipitation and its influence upon aquatic ecosystems—an overview. Water, air, and soil pollution, 6(2-4), 457-481.
  • 18. Harbaugh, W.T., Levinson, A., Wilson, D.M. (2002). Reexamining the empirical evidence for an environmental Kuznets curve. Review of Economics and Statistics, 84(3), 541-551.
  • 19. Hartman, R.S., Wheeler, D., Singh, M. (1997). The cost of air pollution abatement. Applied Economics, 29(6), 759-774.
  • 20. ISO3166-1 ALPHA-3, 2018: https://www.iso.org/iso-3166-country-codes.html, [dostęp: 28.04.2019]
  • 21. Jebli, M.B., Youssef, S.B., Ozturk, I. (2016). Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecological Indicators, 60, 824-831.
  • 22. Kowalczyk, T., Pleszczyńska, E., Ruland F. (Eds) (2004). Grade Models and Methods of Data Analysis. With applications for the Analysis of Data Population, Studies in Fuzziness and Soft Computing, 151. Springer, Berlin – Heidelberg – New York
  • 23. Kuznets, S. (1955). Economic growth and income inequality. The American economic review, 45(1), 1-28.
  • 24. Lau, L.S., Choong, C.K., Ng, C.F. (2018). Role of Institutional Quality on Environmental Kuznets Curve: A Comparative Study in Developed and Developing Countries. IAdvances in Pacific Basin Business, Economics and Finance. Emerald Publishing Limited, 223-247.
  • 25. Mani, M., Wheeler, D. (1998). In search of pollution havens? Dirty industry in the world economy, 1960 to 1995. The Journal of Environment & Development, 7(3), 215- 247.
  • 26. Pope III, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141.
  • 27. Ritchie, H., Roser, M. (2019) Air Pollution. Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/air-pollution' [Online Resource].
  • 28. Rokicki, T. (2016). Situation of steel industry in European Union, In Metal 2016: 25th Anniversary International Conference on Metallurgy and Materials. Conference Proceedings. Ostrava: TANGER Ltd., 1981-1986.
  • 29. Rokicki T., (2017). Segmentation of the EU countries in terms of the mettalurgical industry, In Metal 2017: 26th Anniversary International Conference on Metallurgy and Materials. Conference Proceedings. Ostrava: TANGER Ltd., 2017, 184.
  • 30. Rokicki, T., Michalski, K., Ratajczak, M., Szczepaniuk, H., Golonko, M., (2018). Wykorzystanie odnawialnych źródeł energii w krajach Unii Europejskiej, Rocznik Ochrona Środowiska, 20, 1318-1334.
  • 31. Smith, K.R., Ezzati, M. (2005). How environmental health risks change with development: the epidemiologic and environmental risk transitions revisited. Annual Review of Environment and Resources, 30, 291-333.
  • 32. Smith, W.H. (1974). Air pollution – effects on the structure and function of the temperate forest ecosystem. Environmental Pollution, 6(2), 111-129.
  • 33. Stern, D.I., Common, M.S., Barbier, E.B. (1996). Economic growth and environmental degradation: the environmental Kuznets curve and sustainable development. World development, 24(7), 1151-1160.
  • 34. Stern, D. I. (2004). The rise and fall of the environmental Kuznets curve. World development, 32(8), 1419-1439.
  • 35. Stern, D.I. (2006). Reversal of the trend in global anthropogenic sulfur emissions. Global Environmental Change, 16(2), 207-220.
  • 36. Ulrich, B. (1984). Effects of air pollution on forest ecosystems and waters – the principles demonstrated at a case study in Central Europe. Atmospheric Environment, 18(3), 621-628.
  • 37. Ulrich, B., Pankrath, J. (Eds.). (1983). Effects of accumulation of air pollutants in forest ecosystems: proceedings of a workshop held at Göttingen, West Germany, May 16- 18, 1982. D. Reidel Publishing Company, Dordrecht.
  • 38. Whitmee, S., Haines, A., Beyrer, C., Boltz, F., Capon, A.G., de Souza Dias, B.F., Ezeh, A., Frumkin, H., Gong, P., Head, P., Horton, R., Mace, G.M., Marten, R., Myers, S.S., Nishtar, S., Osofsky, S.A., Pattanayak, S.K., Pongsiri, M.J., Romanelli, C., Soucat, A., Vega, J., Yach, D. (2015). Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation – Lancet Commission on planetary health. The Lancet, 386(10007), 1973-2028.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbe0201b-ece3-4efc-8ba6-912cde5618af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.