PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coupling of inertial measurement units with a virtual world model for supporting navigation in bronchoscopy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background and objective: The purpose of this paper is to provide a method for supporting navigation in bronchoscopy based on measurements of absolute orientation of a tip of a bronchoscope and the length a bronchoscope is pushed in the lumen of an examined bronchial structure. Methods: A hardware solution is designed and developed for collecting the data related to the absolute orientation of a tip of a bronchoscope and the length a bronchoscope is pushed in the lumen of an examined structure. A software which processes these data and visualizes in real-time the actual location of a bronchoscope tip in the lumen of a digital model of the examined structure (i.e. virtual bronchoscopy) is also designed and implemented. Results: A calibration procedure is developed which constitutes a basis for the operation of the proposed system. A phantom of a tree-like structure is build, imitating the anatomy of a bronchial tree, and the proposed method of navigation is tested for the task of navigating in the lumen of the phantom to user-selected target locations. Conclusion: A method has been proposed and tested for Inertial Measurement Unit (IMU)- based support of navigation in bronchoscopy.
Twórcy
  • Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, Krakow, Poland
  • Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, Krakow, Poland
  • Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
Bibliografia
  • [1] Wang KP, Mehta AC, Turner JF, editors. Flexible Bronchoscopy. 2nd ed. Cambridge: Blackwell; 2003.
  • [2] Yarmus L, Feller-Kopman D. Bronchoscopes of the twenty-first century. Clin Chest Med 2010;31:19–27.
  • [3] Dooms C, Seijo L, Gasparini S, Trisolini R, Ninane V, Tournoy KG. Diagnostic bronchoscopy: state of the art. Eur Respir Rev 2010;19:229–36.
  • [4] Tsushima K, Sone S, Hanaoka T, Takayama F, Honda T, Kubo K. Comparison of bronchoscopic diagnosis for peripheral pulmonary nodule under fluoroscopic guidance with CT guidance. Respir Med 2006;100:737–45.
  • [5] Eberhardt R, Anantham D, Ernst A, Feller-Kopman D, Herth F. Multimodality bronchoscopic diagnosis of peripheral lung lesions: A randomized controlled trial. Am J Respir Crit Care Med 2007;176:36–41.
  • [6] Schwarz Y, Mehta AC, Ernst A, Herth F, Engel A, Besser D, et al. Electromagnetic navigation during flexible bronchoscopy. Respiration 2003;70:516–22.
  • [7] Becker H, Herth F, Ernst A, Schwarz Y. Bronchoscopic biopsy of peripheral lung lesions under electromagnetic guidance. J Bronchol 2005;12:9–13.
  • [8] Schwarz Y, Greif J, Becker HD, Ernst A, Mehta A. Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images. Chest 2006;124:988–94.
  • [9] Michalski D, Tabor Z, Zieliński B. Determining the shift of a bronchoscope catheter from the analysis of a video sequence of a bronchoscope video camera. Biocybern Biomed Eng 2017;37:630–6.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbdc43e3-da21-4b6b-ae10-7a90aa8684fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.