Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Trwałość i właściwości eksploatacyjne narzędzi skrawających wykonanych z nanokompozytu tlenku chromu
Języki publikacji
Abstrakty
This article is devoted to nanoscale composite materials based on Cr2O3 obtained by the activated electric fields sintering procedure. In the paper, exploitative properties of the sintered system of Cr2O3 – AlN nanocomposite was examined. Mechanical properties of the material were examined, especially from the perspective of its performance in the cutting tools. In particular, its wear was tested at different cutting speeds, as well as for intermittent hard cutting, and the results were compared with other materials available in the market. Compared to other cutting tools of the same class, Bichromit-R performed the same lifetime for 3-5 times higher cutting speeds, or up to 45% longer lifetime for the same cutting speed. The results lead to the conclusion that composite nanostructure improves substantially exploitation characteristics of the cutting tools.
Artykuł jest poświęcony właściwościom eksploatacyjnym materiałów kompozytowych na bazie Cr2O3 wytworzonych metodą spiekania w polu elektrycznym. W szczególności poświęcono uwagę nanokompozytowemu spiekowi Cr2O3 – AlN wykorzystywanemu do wytwarzania narzędzi skrawających. Zbadano właściwości mechaniczne materiału z uwzględnieniem trwałości ostrzy i powierzchni skrawających. Zbadano zużycie przy różnych prędkościach skrawania w warunkach ciągłych i przerywanych. W porównaniu do ostrzy podobnej klasy, np. Bichromit-R, badane płytki wykazywały podobną trwałość przy wyższych 3 do 5 razy prędkościach skrawania, albo pracowały ok. 45% dłużej przy tych samych prędkościach. Wyniki badań prowadzą do wniosku, że nanostruktura materiału kompozytowego znacząco polepsza właściwości eksploatacyjne ostrzy skrawających.
Czasopismo
Rocznik
Tom
Strony
686--691
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Department "Quality, standardization, certification and manufacturing technology of products" Ukrainian State University of Railway Transport Square Feyerbach 7, Kharkov, 61010, Ukraine
autor
- Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine 2, Avtozavodskaya Str., Kiev, 04074, Ukraine
autor
- Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom ul. 54 Stasieckiego, 26-600 Radom, Poland
autor
- Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom ul. 54 Stasieckiego, 26-600 Radom, Poland
Bibliografia
- 1. Bakša T, Kroupa T, Hanzl P, Zetek M. Durability of Cutting Tools during Machining of Very Hard and Solid Materials. Procedia Engineering 2015; 100: 1414-1423, https://doi.org/10.1016/j.proeng.2015.01.511.
- 2. Веrhard F, Le Gallet S, Spinassou N, Paris S, Gaffet E, Woolman JN, Munir ZA. Dense Nanostructured Materials Obtained by Spark Plasma Sintering and Field Activated Pressure Assisted Synthesis Starting from Mechanically Activated Powder Mixtures. Science of Sintering 2004; 36: 155-164, https://doi.org/10.2298/SOS0403155B.
- 3. Bobzin K. High-performance coatings for cutting tools. CIRP Journal of Manufacturing Science and Technology 2017; 18: 1-9, https://doi.org/10.1016/j.cirpj.2016.11.004.
- 4. Chen Zh, Ji L, Guo R, Xu Ch, Li Q. Mechanical properties and microstructure of Al2O3/Ti(C,N)/CaF2@Al2O3 self-lubricating ceramic tool. International Journal of Refractory Metals and Hard Materials 2019; 80: 144-150, https://doi.org/10.1016/j.ijrmhm.2019.01.006.
- 5. Chung DDL. Carbon Composites: Composites with Carbon Fibers, Nanofibers and Nanotubes. 2nd Edition. Amsterdam: Elsevier, 2017, https://doi.org/10.1016/B978-0-12-804459-9.00001-4.
- 6. Cui X, Zhao B, Guo J. A review of high-speed intermittent cutting of hardened steel. The International Journal of Advanced Manufacturing Technology 2017; 93(9-12): 3837-3846, https://doi.org/10.1007/s00170-017-0815-y.
- 7. Dong W, Liu S, Yang X, Wang H, Fang Z. Balancing reliability and maintenance cost rate of multi-state components with fault interval omission. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(1): 37-45, https://doi.org/10.17531/ein.2019.1.5.
- 8. Fang Y, Tao W, Tee KF. A new computational method for structural reliability with big data. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(1): 159-163, https://doi.org/10.17531/ein.2019.1.18.
- 9. Fang Zh Z (Ed.). Sintering of Advanced Materials. Oxford: Woodhead Publishing Ltd, 2010, https://doi.org/10.1533/9781845699949.
- 10. Gevorkian ES, Kodash V Yu. Tungsten cаrbide cutting tool materials. United States Patent No. 6,617,271 В1 МКИ C 04 B 35/36.
- 11. Gevorkyan E, Lavrynenko S, Rucki M, Siemiatkowski Z, Kislitsa M. Ceramic cutting tools out of nanostructured refractory compounds. International Journal of Refractory Metals & Hard Materials 2017; 68: 142-144, https://doi.org/10.1016/j.ijrmhm.2017.07.006.
- 12. Gevorkyan ES, Timofeeva LA, Chishkala VA, Kisly PS. Hot-pressing of tumgsten monocarbide nanopowders with electrical heating. Nanostructural Materials Science 2006; 2: 46-51.
- 13. Gola A. Reliability analysis of reconfigurable manufacturing system structures using computer simulation methods. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(1): 90-102, https://doi.org/10.17531/ein.2019.1.11.
- 14. Groza JR, Zavaliangos АК. Sintering activation by external electrical field. Materials Science and Engineering A 2000; 287(2): 171-177, https://doi.org/10.1016/S0921-5093(00)00771-1.
- 15. Kisly PS, Prokopiv NM, Gevorkyan ES. Raw material for a composite. USSR Invention Certificate No. 759014 V 35/12. 01.05.92.
- 16. Królczyk G, Gajek M, Legutko S. Predicting the tool life in the dry machining of duplex stainless steel. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2013; 15(1): 62-65.
- 17. Liu J, Wu B. Effects of Eu2O3 addition on microstructure, grain-boundary cohesion and wear resistance of high-alumina ceramics. Journal of Alloys and Compounds 2017; 695: 2324-2329, https://doi.org/10.1016/j.jallcom.2016.11.099.
- 18. Liu W, Li A, Wu H, He R, Huang J, Long Y, Deng X, Wang Q, Wang Ch, Wu Sh. Effects of bias voltage on microstructure, mechanical properties, and wear mechanism of novel quaternary (Ti, Al, Zr)N coating on the surface of silicon nitride ceramic cutting tool. Ceramics International 2016; 42(15): 17693-17697, https://doi.org/10.1016/j.ceramint.2016.08.089.
- 19. Mazurkiewicz D. Computer-aided maintenance and reliability management systems for conveyor belts. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2014; 16(3): 377-382.
- 20. Nersisyan HH, Lee JH, Won CW. SHS for large-scale synthesis method of transition metal nano powders. Int. J. Self Propag. High Temp. Synth. 2003; 12(2): 149-158.
- 21. Olevsky E A (Ed.). Spark-Plasma Sintering and Related Field-Assisted Powder Consolidation Technologies. Basel: MDPI, 2017.
- 22. Pei Zh, Zheng X, Li Zh. Progress on Synthesis and Applications of Cr2O3 Nanoparticles. Journal of Nanoscience and Nanotechnology 2016; 16(5): 4655-4671, https://doi.org/10.1166/jnn.2016.12602.
- 23. Philip PK. Tool wear and tool life in intermittent cutting of hardened steel using conventional hardmetal inserts. International Journal of Machine Tool Design and Research 1978; 18(1): 19-28, https://doi.org/10.1016/0020-7357(78)90016-1.
- 24. Sawka A, Kwatera A, Woźnicki A, Zasadziński J. Cemented carbide cutting tools life with nanocrystalline Al2O3 layer deposited by MOCVD. Archives of Civil and Mechanical Engineering 2016; 16(3): 351-364, https://doi.org/10.1016/j.acme.2016.01.008.
- 25. Stanciu LA, Kodash VY, Groza JR. Effects of heating rate on densification and grain growth during field actived sintering of Al2O3 and MoSi2. Metallurgical and Materials Transactions A 2001; 32(10): 2633-2638, https://doi.org/10.1007/s11661-001-0053-6.
- 26. Staszuk M, Pakuła D, Chladek G, Pawlyta M, Pancielejko M, Czaja P. Investigation of the structure and properties of PVD coatings and ALD + PVD hybrid coatings deposited on sialon tool ceramics. Vacuum 2018; 154: 272-284, https://doi.org/10.1016/j.vacuum.2018.04.032.
- 27. Wang D, Xue Ch, Cao Y, Zhao J. Fabrication and Cutting Performance of an Al2O3/TiC/TiN Ceramic Cutting Tool in Turning of an Ultra-High-Strength Steel. The International Journal of Advanced Manufacturing Technology 2017; 91(5-8): 1967-1976, https://doi.org/10.1007/s00170-016-9927-z.
- 28. Zetek M, Česáková I, Švarc V. Increasing Cutting Tool Life when Machining Inconel 718. Procedia Engineering 2014; 69: 1115-1124, https://doi.org/10.1016/j.proeng.2014.03.099.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbdbcd54-d2ac-4594-b642-47db4d6d8f12