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1. Introduction 

The safety of passengers and cargo involved in the 
process of transport is one of the most important 
criteria for the evaluation of the process. In the 
maritime transport the most important factors 
making up the security include: the technical 
efficiency of the ship, the qualifications of the 
people in charge of the ship and the conditions 
under which the transport process takes a place. 
There are many hazard situations, in maritime 
transport, particularly in restricted waterways. In 
such situations it is useful to have methods to assess 
the safety of traffic. They allow the evaluation of 
the activities what lead to settle the hazard situation 
and allow the evaluation of quality control and 
assessment in terms of traffic safety [13], [15]. This 
assessment can help to develop the best control or 
the best manoeuvre for given hazard situation [3], 
[4], [13], [14].  
In the case of shipping on the restricted waters  
important aspects of safety are the technical 
characteristics of vessel, the type of waterway and 
its navigational infrastructure [3], [8], [10], [11].  
In the case of shipping on the restricted waters  the 
technical characteristics of vessel, the type of 
waterway and its navigational infrastructure are 
important aspects of its safety [3], [10], [11].  
Navigational infrastructure is a set of basic 
navigation, stable and distributed objects and 

systems necessary to ensure adequate level of 
maritime safety [11]. 
The paper is devoted to the combining the results on 
reliability of the two-state consecutive “m out of n: 
F” and consecutive “m out of n: G” systems ([1], [2], 
[5]-[7], [12]) into the safety analysis of the ship on 
restricted waterway [10].  
   
2. Two-state consecutive “m out of n: F” 
systems  

In the case of two-state reliability analysis of 
consecutive “m out of n” systems we assume that 
([5]):  
− n  is the number of  system components, 
− ,iE ,,...,2,1 ni =  are components of a system,  
− iT  are independent random variables 

representing the lifetimes of components ,iE  
,,...,2,1 ni =  

− ),,0 ),()( ∞∈<>= ttTPtR ii  is a reliability 
function of a component ,iE  ,,...,2,1 ni =  

− ),,0 ),()(1)( ∞∈<≤=−= ttTPtRtF iii  is the 
distribution function of the component iE  
lifetime iT , ,,...,2,1 ni =  also called an 
unreliability function of a component ,iE  

.,...,2,1 ni =  
 
Definition 1. A two-state system is called a two-
state consecutive “m out of n: F” system if it is 
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failed if and only if at least its m neighbouring 
components out of n  its components arranged in a 
sequence of E1, E2, …, En, are failed. 
 
After assumption that: 
− T  is a random variable representing the 

lifetime of the consecutive “m out of n: F” 
system,  

− ),,0 ),()()( ∞∈<>= ttTPtm
nCR  is the 

reliability function of a non-homogeneous 
consecutive “m out of n: F” system, 

− ),,0 ),()(1)( )()( ∞∈<≤=−= ttTPtt m
n

m
n CRCF  

is the distribution function of a consecutive “m 
out of n: F” system lifetime T , 

we can formulate the following auxiliary theorem 
[5]. 
 
Lemma 1. The reliability function of the two-state 
consecutive “m out of n: F” system is given by the 
following recurrent formula 
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).,0for ∞∈<t  

 
Definition 2. The consecutive “m out of n: 
F“system is called homogeneous if its components 
lifetimes Ti have an identical distribution function 
 
   F(t) = P(Ti  ≤ t), i =1,2,… , n, ),,0 ∞∈<t  
 
i.e. if its components Ei have the same reliability 
function 
 
   R(t) = 1 - F(t), ).,0 ∞∈<t  
 
Lemma 1 simplified form for homogeneous 
systems takes the following form. 

Lemma 2. The reliability function of the 
homogeneous two-state consecutive “m out of n: F” 
system is given by the following recurrent formula 
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3. Two-state consecutive “m out of n: G” 
systems 
 

Definition 3. A two-state system is called a two-state 
consecutive “m out of n: G” system if it is good if 
and only if at least its m neighbouring components 
out of n  its components arranged in a sequence of 
E1, E2, …, En, are good. 
 
In further analysis we assume, that: 
 
− T  is a random variable representing the lifetime 

of the consecutive “m out of n: G” system,  
− ),,0 ),()()( ∞∈<>= ttTPtm

nCRG  is the reliability 
function of a non-homogeneous consecutive “m 
out of n: G” system, 

− ),,0 ),()(1)( )()( ∞∈<≤=−= ttTPtt m
n

m
n CRGCFG  

is the distribution function of a consecutive “m 
out of n: G” system lifetime T . 

 
Thus, we can formulate the following auxiliary 
theorem [12]. 
 
Lemma 3. The reliability function of the two-state 
consecutive “m out of n: G” system is given by the 
following recurrent formula 
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From the above theorem, as a particular case for the 
homogeneous system, i.e. system composed of 
components with identical reliability, we 
immediately get the following corollary.   
 
Corollary 4. The reliability function of the 
homogeneous two-state consecutive “m out of n: G” 
system is given by the following recurrent formula 
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).,0for ∞∈<t  

 
4. The main kind of navigation infrastructure 
in waterways design 
 

The classification of navigation infrastructure is as 
follows [10]-[11]: 

- signalling – warning and visual positioning 
infrastructure; 

- radio-navigation positioning infrastructure; 
- vessel traffic monitoring, information and 

navigation support infrastructure. 
 

Every kind of the infrastructure has components in 
the form of an object or a system of navigation 
infrastructure. 
An object is a simple element, for example a buoy or 
lighting tower. The objects create system of 
navigation infrastructure.  
For safe navigation in restricted or limited areas 
IALA introduced the system of buoys and leading 
lights. It can be helpful to define a clearing line for 
the limits of safe navigation [9]. 
There are major parameters which are important for 
the optimum number and arrangement of buoys and 
leading lights. These parameters depend on the 
average channel width, the channel length, whether 
the section is straight or curved. 
In the other hand the optimum separation distance 
between buoys and the numbers of buoys and 
leading lights are important. The distance is 
depended on the average width of the section 
concerned and its curvature. It is obvious  that in the 
sections of waterway which have the greatest risk of 
groundings or collisions, the numbers of buoys and 
leading lights should be highest [9]. 
 
5. Safety analysis of ship on waterway 
 

Definition 4. The system is in safety state if the ship 
operator has full navigational information. 
 
Definition 5. The system is in dangerous state if the 
ship operator has insufficient navigational 
information. 
 
Under above definitions we define the set of safety 
states as  
 
   },,{ DS SSS =  
 
where: 
  
SS – state of safety,  
SD – state of dangerous.  
 
Thus, after assumption that: 
 
nS – limit number for safety state; 
nD – limit number for dangerous state. 
 
and considering formulae (1)-(4), we can define 
probabilities of states as follows: 
 
- P(SS) = ),(t)(n

n
sCRG ).,0for ∞∈<t  

- P(SD) = )(1 t- )(n
n

DCR , ).,0for ∞∈<t  
 
It means that 



Guze Sambor, Smolarek Leszek                             
Modelling the ship safety on waterway according to navigational signs reliability 

 

 142

- probability that the system is in safety state is equal 
to probability that at least nS neighbouring 
components are good; 
 
- probability that the system is in dangerous state is 
equal to probability that at least nD neighbouring 
components are failed. 
 
4. Application 
 

Let us consider the vessel waterway given in Figure 
1 [8]. 
 

 
 

Figure 1. The vessel manoeuvring phases. 
 
In particular case we have on the track 12 
components of buoys system. We assume that for 
phase of track keeping ship operator need at least 
two navigational signs fo safety manoeuvring and in 
the phases of turn recovery the same operator need 
at least three signs. Thus, the number limits for 
safety states are give as 

 
   ,3=Sn .2=Dn  

 
Because the probabilities of buoys’ visibility are the 
same, the probabilites of respective states are given 
as 
 
   )(3

12 t)( )(CRGSP S = , where 

- for 3<n  
 
   ,0)()( 3

2
3

1 == tt )()( CRGCRG  ).,0for ∞∈<t   (5) 
 
- for 3=n  
 
  ,)]([)( 33

3 tRt)( =CRG ).,0for ∞∈<t    (6) 
 
- for 3>n  
 
   ( )[ )()(1)( 3

1
3 ttRt )(

n-
)(

n CRGCRG −=  
 

  )()()()( )(
3

2)(
2 ttRttR m

n-
m

n- CRGCRG −−  
 
  ])()( 2 tRtR ++ ).,0for ∞∈<t   (7) 

 
and for  
 
  )(1 3

12 t)( )(CRSP D −= , where 
 
- for 2<n  
 
  ,0)(2

1 =t)(CR  ).,0for ∞∈<t     (8) 
 
- for 2=n  
 
   ),()(21)( 22

2 tRtRt)( +−=CR ).,0for ∞∈<t   (9) 
 
- for 3>n  
 

   

[ ( ) ],)()(1)()(1
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ttRttR
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)(
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)(
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)(
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         (10) 

 
).,0for ∞∈<t  

 
In particular case when the lifetimes of buoys have 
exponential distribution function of the form  
 
   tetF 01.01)( −−= , ),,0for ∞∈<t  
 
i.e. if the reliability function of the particular 
buoys are given by 
 
   tetR 01.0)( −= , ).,0for ∞∈<t  
 
Considering (5)–(10), we get the following 
reccurent formula for the probabilities of safety 
states 
 

a) safety state SS 
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- for 3<n  
 
   ,0)()( 3

2
3

1 == tt )()( CRGCRG  ).,0for ∞∈<t (11) 
 
- for 3=n  
 
  ,)( 03.03

3
t)( et −=CRG ).,0for ∞∈<t              (12) 

 
- for 3>n  
 
   ( )[ )(1)( 3

1
01.03 tet )(

n-
t)(

n CRGCRG −−=  
 

  )()( )(
3

02.0)(
2

01.0 tete m
n-

tm
n-

t CRGCRG −− −−  
 
  ],02.001.0 tt ee −− ++ ).,0for ∞∈<t         (13) 

 
b) in the dangeroues state SD 

 
- for 2<n  
 
  ,0)(2

1 =t)(CR  ).,0for ∞∈<t               (14) 
 
- for 2=n  
 
   ,21)( 02.001.02

2
tt)( eet −− +−=CR ).,0for ∞∈<t (15) 

 
- for 3>n  
 
   

[ ( ) ],)(1)(1)( 2
2

01.02
1

01.02 tetet )(
n-

t)(
n-

t)(
n CRCRCR −− −+−=  

 
).,0for ∞∈<t                 (16) 

 
Then the values of the particular probabilities of the 
safety states, calculated by the computer program 
based on the formulae (11)-(16), are presented in the 
Tables 1-2 and illustrated in Figure 2. 
 
Table 1. The values of probabilities of the dangerous 
state of navigational signs 
 

t )(1 2
12 t)( )(CRSP D −=  

0.0 0.0000 
5.0 0.0248 
10.0 0.0885 
15.0 0.1762 
20.0 0.2753 
25.0 0.3766 
30.0 0.4737 
35.0 0.5626 
40.0 0.6415 
45.0 0.7095 
50.0 0.7671 

55.0 0.8149 
60.0 0.8541 
65.0 0.8857 
70.0 0.9111 
75.0 0.9312 
80.0 0.9470 
85.0 0.9594 
90.0 0.9690 
95.0 0.9764 
100.0 0.9821 
105.0 0.9865 
110.0 0.9898 
115.0 0.9923 
120.0 0.9942 
125.0 0.9957 
130.0 0.9968 
135.0 0.9976 
140.0 0.9982 
145.0 0.9987 
150.0 0.9990 
155.0 0.9993 
160.0 0.9995 

 
Table 2. The values of probabilities of the safety 
state of navigational signs 
 

t )(3
12 t)( )(CRGSP S =  

0.0 0.0000 
50.0 0.3990 
100.0 0.4637 
150.0 0.4871 
200.0 0.4833 
250.0 0.4156 
300.0 0.3151 
350.0 0.2194 
400.0 0.1447 
450.0 0.0924 
500.0 0.0578 
550.0 0.0357 
600.0 0.0219 
650.0 0.0134 
700.0 0.0082 
750.0 0.0050 
800.0 0.0030 
850.0 0.0018 
900.0 0.0011 
950.0 0.0007 
1000.0 0.0004 
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Figure 2. The graphs of particular states 
probabilities  
 
5. Conclusion 

The paper is devoted to an  approach to safety 
analysis of ship in restricted waterways because of 
navigational infrastructure. The recurrent formulae 
for two-state reliability functions, a general one 
for non-homogeneous and its simplified form for  
homogeneous two-state consecutive “m out of k: 
G” systems have been proposed. The formulae for 
a homogeneous two-state consecutive “m out of k: 
F” and a homogeneous two-state consecutive “m 
out of k: G” has been applied to  evaluation of ship 
safety in limited waterway.  
Further, the safety model was used to the safety of 
ship on exemplary limited area with 12 
navigational signs. The probabilities of respective 
states was evaluated and illustrated. 
The transition probabilities between states depend 
of navigational signs technical reliability and 
waterway shape.    
The calculated examples show us the possibilities 
of practical model usage. 
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