PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Propagation of a thermoelastic wave in a half-space of a homogeneous isotropic material subjected to the effect of gravity field

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The propagation of thermoelastic waves in a homogeneous, isotropic elastic semi-infinite space is subjected to a gravitational field, which is at temperature T0 initially, and whose boundary surface is subjected to heat source and load moving with finite velocity. Temperature and stress distribution occurring due to heating or cooling and have been determined using certain boundary conditions. Numerical results have been given and illustrated graphically in each case considered. The results indicate that the effect of gravity field is very pronounced. Comparison is made with the results predicted by the theory of thermoelasticity in the absence of gravity. The results indicate that the effect of the gravity is very pronounced.
Rocznik
Strony
564--573
Opis fizyczny
Bibliogr. 35 poz., wykr.
Twórcy
  • Department of Mathematics, Faculty of Science, Sohag University, Egypt
  • Department of Mathematics, Faculty of Science, SVU, Qena 83523, Egypt
  • Department of Mathematics, Faculty of Science, Taif University, 888, Saudi Arabia
Bibliografia
  • [1] A.M. El-Naggar, A.M. Abd-Alla, On a generalized thermoelastic problem in an infinite cylinder under initial stress, Earths, Moon & Planets 37 (1987) 213–223.
  • [2] A.M. Abd-Alla, S.M. Ahmed, Rayleigh waves in an orthotropic thermoelastic medium under gravity field and initial stress, Earth, Moon, and Planets 75 (1996) 185–197.
  • [3] M.I.A. Othman, Y.D. Elmaklizi, S.M. Said, Generalized thermoelastic medium with temperature-dependent properties for different theories under the effect of gravity field, International Journal of Thermophysics 34 (2013) 521– 537.
  • [4] M.I.A. Othman, M.I.M. Hilal, Rotation and gravitational field effect on two-temperature thermoelastic material with voids and temperature dependent properties type III, Journal of Mechanical Science and Technology 29 (2015) 3739–3746.
  • [5] A.M. Abd-Alla, S.M. Abo-Dahab, T.A. Al-Thamali, Propagation of Rayleigh waves in a rotating orthotropic material elastic half-space under initial stress and gravity, Journal of Mechanical Science and Technology 26 (2012) 2815–2823.
  • [6] M.I.A. Othman, S.M. Abo-Dahab, Kh. Lotfy, Gravitational effect and initial stress on generalized magneto-thermo- microstretch elastic solid for different theories, Applied Mathematics and Computation 230 (2014) 597–615.
  • [7] A.M. Abd-Alla, S.R. Mahmoud, S.M. Abo-Dahab, On problem of transient coupled thermoelasticity of an annular fin, Meccanica 47 (2012) 1295–1306.
  • [8] S.M. Ahmed, Influence of gravity on the propagation of waves in granular medium, Applied Mathematics and Computation 101 (1999) 269–280.
  • [9] A.M. Abd-Alla, S.M. Abo-Dahab, S.R. Mahmoud, H.A. Hammad, On generalized magneto-thermoelastic Rayleigh waves in a granular medium under influence of gravity field and initial stress, Journal of Vibration and Control 40 (2011) 451–472.
  • [10] A.M. Abd-Alla, S.R. Mahmoud, Magneto-thermoelastic problem in rotating non-homogeneous orthotropic hollow cylinder under the hyperbolic heat conduction model, Meccanica 45 (2010) 451–462.
  • [11] A.M. Abd-Alla, S.M. Abo-Dahab, F.S. Bayones, Propagation of Rayleigh waves in magneto-thermo-elastic half-space of a homogeneous orthotropic material under the effect of the rotation, initial stress and gravity field, Journal of Vibration and Control 19 (2013) 1395–1420.
  • [12] A.M. Abd-Alla, S.M. Ahmed, Stoneley and Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence of gravity, Applied Mathematics and Computation 135 (2003) 187–200.
  • [13] A.M. Abd-Alla, S.R. Mahmoud, S.M. Abo-Dahab, M.I. Helmy, Propagation of S-wave in a non-homogeneous anisotropic incompressible and initially stressed medium under influence of gravity field, Applied Mathematics and Computation 217 (2011) 4321–4332.
  • [14] A.M. Abd-Alla, S.M. Abo-Dahab, H.A.H. Hammad, Propagation of Rayleigh waves in generalized magneto-thermoelastic orthotropic material underinitial stress and gravity field, Applied Mathematical Modelling 35 (2011) 2981–3000.
  • [15] A.E. Abouelregal, Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model, International Journal of Engineering Science 49 (8) (2011) 781–791.
  • [16] M.C. Singh, N. Chakraborty, Reflection of a plane magneto-thermoelastic wave at the boundary of a solid half-space in presence of initial stress, Applied Mathematical Modelling 39 (2015) 1409–14216.
  • [17] R. Kakar, Effect of initial stress and gravity on Rayleigh wave propagation in non-homogeneous isotropic elastic media, International Journal of Applied Engineering and Technology 2 (2012) 9–16.
  • [18] Z. Wang, H. Yu, Q. Wang, Analytical solutions for elastic fields caused by eigenstrains in two joined and perfectly bounded half-spaces and related problems, International Journal of Plasticity 76 (2016) 1–28.
  • [19] R. Kumar, R.R. Gupta, Propagation of waves in transversely isotropic micropolar generalized thermoelastic half space, International Communications in Heat and Mass Transfer 37 (2010) 1452–1458.
  • [20] N. Sarkar, A. Lahiri, A three-dimensional thermoelastic problem for a half-space without energy dissipation, International Journal of Engineering Science 51 (2012) 310–325.
  • [21] H.H. Sherief, H.A. Saleh, A half-space problem in the theory of generalized thermoelastic diffusion, International Journal of Solids and Structures 42 (2005) 4484–4493.
  • [22] B. Singh, Wave propagation in an initially stressed transversely isotropic thermoelastic solid half-space, Applied Mathematics and Computation 217 (2010) 705–715.
  • [23] M.A. Ezzat, H.M. Youssef, Three-dimensional thermal shock problem of generalized thermoelastic half-space, Applied Mathematical Modelling 34 (11) (2010) 3608–3622.
  • [24] R. Kumar, M. Singh, Plane waves at an imperfectly bonded interface of two orthotropic generalized thermoelastic rotating half-spaces with two relaxation times, Theoretical and Applied Fracture Mechanics 52 (2009) 131–139.
  • [25] R. Xia, X. Tian, Y. Shen, Dynamic response of two- dimensional generalized thermoelastic coupling problem subjected to a moving heat source, Acta Mechanica Solida Sinica 27 (2014) 300–305.
  • [26] Yu.A. Rossikhin, Propagation of plane waves in an anisotropic thermoelastic half-space, Soviet Applied Mechanics 12 (1976) 371–375.
  • [27] S.M. Said, Influence of gravity on generalized magneto- thermoelastic medium for three-phase-lag model, Journal of Computational and Applied Mathematics 291 (2016) 142–157.
  • [28] S.M. Ahmed, Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of gravity, International Journal of Mathematics and Mathematical Sciences 2005 (2005) 3145–3155.
  • [29] R. Kumar, V. Chawla, Wave propagation at the imperfect boundary between transversely isotropic thermodiffusive elastic layer and half-space, Journal of Engineering Physics and Thermophysics 84 (2011) 1192–1200.
  • [30] M.I.A. Othman, S.Y. Atwa, Thermoelastic plane waves for an elastic solid half-space under hydrostatic initial stress of type III, Meccanica 47 (2012) 1337–1347.
  • [31] R. Kumar, M. Singh, Propagation of plane waves in thermoelastic cubic crystal material with two relaxation times, Applied Mathematics and Mechanics 28 (2007) 627–641.
  • [32] P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Part I, McGraw-Hill, New York, 1953.
  • [33] P. Ailawalia, N.S. Narah, Effect of rotation in generalized thermoelastic solid under the influence of gravity with an overlying infinite thermoelastic fluid, Applied Mathematics and Mechanics 30 (2009) 1505–1518.
  • [34] S.K. Vishwakarma, S. Gupta, Rayleigh wave propagation: a case wise study in a layer over a half space under the effect of rigid boundary, Archives of Civil and Mechanical Engineering 14 (2014) 181–189.
  • [35] B.K. Datta, Some observation on interactions of Rayleigh waves in an elastic solid medium with the gravity field, Revue Roumaine des Sciences Techniques – Série de Mécanique Appliquée 31 (1986) 369–374.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbce840f-975a-4801-bcef-506164b94084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.