PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the Quality Improvement of Mixed Municipal Solid Waste by Greenhouse Blackout Tarp with Biodrying System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
At the end of 2020, Talang Gulo Landfill Site 1 in Jambi City was officially closed due to overcapacity. Municipal solid waste disposal has shifted to the Talang Gulo site 2 with a life expectancy of ± 90 years based on the design plan. However, this is difficult to realize because segregation and composting are not optimal, so more than 90% of the waste transported to the final processing site (TPA) is in a landfill. Thus, landfill mining was executed to utilize excavated landfill waste as a material and energy. It was carried out at depths of 3, 5, and 7 meters with an estimated sample age of > 9 years. The mixed landfill samples contained 55.6–66.2% moisture content, 50.3–80.6% volatile content, 19.4–49.7% ash content, 2.6–4.2% fixed carbon, and 3.5–5.7 MJ/kg calorific value. Furthermore, the landfill waste was dried using the biodrying method, combining fresh and landfill waste in the pile composition. The ratio of landfill waste to the addition of fresh waste is 1:0 (control pile), 1:1, 1:2, 1:3, and 1:4. The drying method reduced moisture content of 9–29.1% with a lower calorific value of 5–6.8 MJ/kg. Based on statistical analysis, it is known that waste ratio has a significant effect on moisture content. Based on the weighting results, the optimum mixture ratio is 1:1 (pile 2).
Rocznik
Strony
200--209
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Ganesa Street 10, Bandung, West Java, Indonesia
autor
  • Faculty of Agriculture, Jambi University, Jambi Luar Kota, Muaro Jambi Regency, Jambi 36657, Indonesia
Bibliografia
  • 1. Ab Jalil N.A., Basri H., Ahmad Basri N.E., Abushammala M.F.M. 2016. Biodrying of municipal solid waste under different ventilation periods. Environmental Engineering Research, 21(2), 145–151. https://doi.org/ 10.4491/EER.2015.122
  • 2. Chaerul M., Fakhrunnisa A. 2020. Refuse-derived fuel production through drying (case study: solid waste from canteens). Jurnal Bahan Alam Terbarukan, 9(1), 9–80. https://doi.org/10.15294/jbat.v9i1.24609
  • 3. Chiemchaisri C., Charnnok B., Visvanathan C. 2010. Recovery of plastic wastes from dumpsites as refuse-derived fuel and its utilization in small gasification systems. Bioresource Technology, 101(5), 1522–1527. https://doi.org/10.1016/j.biortech.2009.08.061
  • 4. Gavelyte S., Dace E., Baziene K. 2016. The effect of particle size distribution on hydraulic permeability in a waste mass. Energy Procedia, 95, 140–144. https://doi.org/10.1016/j.egypro.2016.09.035
  • 5. Gendebien A., Leavens A., Blackmore K., Godley A., Lewin K., Whiting K.J. 2003. Refuse-derived fuel. Current Practice and Perspectives Final Report, European Commission.
  • 6. Hermann R., Baumgartner R.J., Sarc R., Ragossnig A., Wolfsberger T., Eisenberger M., Budischowsky A., Pomberger R. 2014. Landfill mining in Austria: foundations for an integrated ecological and economic assessment. Waste Management, 32(9), 48–58. https://doi.org/10.1177/0734242X14541168
  • 7. Huilinir C., Villegas M. 2014. Biodrying of pulp and paper secondary sludge: kinetics of volatile solid biodegradation. Bioresource Technology, 157, 206–213. https://doi.org/10.1016/j.biortech.2014.01.109
  • 8. IPCC. 2007. Climate change 2007: mitigation, contribution of working group iii to the fourth assessment report of the intergovernmental panel on climate change [B. Metz, O.R. Davidson, P.R. Bosch,R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., XXX.
  • 9. Kuo N.W., Ma H.W., Yang Y.M., Hsiao T.Y., Huang C.M. 2007. Investigating the potential of metal recovery from the municipal waste incinerator in Taiwan. Waste Management, 27, 1673–1679. https://doi.org/10.1016/j.wasman.2006.11.009
  • 10. Made Wahyu Widyarsana I., Ameliya Tambunan S. 2022. Analysis of potential utilization of landfill materials (case study: Sumur Batu landfill, Bekasi). IOP Conference Series: Earth and Environmental Science, 999(1).
  • 11. Ngamket K., Wangyao K., Patumsawad S., Chaiwiwatworakul P., Towprayoon S. 2021. Quality improvement of mixed MSW drying using a pilot-scale solar greenhouse biodrying system. Journal of Material Cycles and Waste Management, 23, 436–448. https://doi.org/10.1007/s10163-020-01152-w
  • 12. Nithikul J. 2007. The potential of refuse-derived fuel production from Bangkok municipal waste. School of environment, resource, and development. Asian Institute of Technology.
  • 13. Pasek A.D., Gultom K.W., Suwono A. 2013. Feasibility of recovering energy from municipal solid waste to generate electricity. Journal of Engineering and Technological Science, 45(3), 241–256. https://doi.org/10.5614/j.eng.technol.sci.2013.45.3.3
  • 14. Quaghebeur M., Laenen B., Geysen D., Nielsen P., Pontikes Y., Van Gerven T., Spooren J. 2013. Characterization of landfilled materials: screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83. https://doi.org/10.1016/j.jclepro.2012.06.012
  • 15. Rahardyan B., Dwirestiani R., Padmi T. 2010. Determination of intrinsic permeability for packed waste of Indonesian solid waste. Journal of Engineering and Technological Science, 42(2), 137–150. https://doi.org/10.5614/itbj.eng.sci.2010.42.2.3
  • 16. Riadi L., Fransiscus Y., Simangunsong T.L., Suhud F. 2020. Characterization of food waste from a campus canteen as a potential feedstock for biogas production. Journal of Engineering and Technological Science, 52(6), 867-880. https://doi.org/10.5614/j.eng.technol.sci.2020.52.6.7
  • 17. Slezak R., Krzystek L., Ledakowicz S. 2019. Biological drying of municipal solid waste from landfill. Drying Technology, 1–11. https://doi.org/10.1080/07373937.2019.1611599
  • 18. Tchonanoglous G., Vigil T. 1993. Integrated solid waste management. McGraw-Hill, New York.
  • 19. Tom A.P., Pawels R., Haridas A. 2016. Biodrying process: a sustainable technology for the treatment of municipal solid waste with high moisture content. Waste Management, 49, 64–72. https://doi.org/10.1016/j.wasman.2016.01.004
  • 20. Yang B., Hao Z., Jahng D. 2017. Advances in biodrying technologies for converting organic wastes into solid fuel. Drying Technology, 35(16), 1950–1969. https://doi.org/10.1080/07373937.2017.1322100
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbc744d1-358e-457b-9d2a-8fb3971295b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.