PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Assisted propulsion device of a semi-submersible ship based on the magnus effect

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to explore the potentiality of wind propulsion on semi-submersible ships. A new type of Flettner rotor (two rotating cylinders) system installed on a semi-submersible ship is proposed. The structure and installation of two cylinders with a height of 20 m and a diameter of 14 m are introduced. The numerical simulation of the cylinder is carried out in Fluent software. The influence of apparent wind angle and spin ratio on the two cylinders are analysed, when the distance between two cylinders is 3D-13D (D is cylinder diameter). When the distance between two cylinders is 3D, the performance of the system increases with an increase in spin ratio. Moreover, the apparent wind angle also has an effect on the system performance. Specifically, the thrust contribution of the system at the apparent wind angle of 120° is the largest at the spin ratio of 3.0. The maximum thrust reaches 500 kN. When the spin ratio is 2.5 and the apparent wind angle is 120°, the maximum effective power of the system is 1734 kW. In addition, the influence of the two cylinders distance on system performance cannot be ignored. When the distance between the two cylinders is 7D and the spin ratio is 2.5, the effective power of the system reaches a maximum, which is 1932 kW.
Rocznik
Tom
Strony
33--46
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China, China
autor
  • College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China, China
autor
  • College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China, China
autor
  • College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China, China
autor
  • College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China, China
Bibliografia
  • 1. L. Zhu, B.L. Li, A. Li, W.X. Ji, Y. Qian, X.C. Lu and Z. Huang. ‘Effects of fuel reforming on large-bore low-speed two-stroke dual fuel marine engine combined with EGR and injection strategy’. International Journal of Hydrogen Energy, 45, 2020. 29505-29517. doi: 10.1016/ j.oceaneng.2019.01.026.
  • 2. ICCT, The international maritime organization’s initial greenhouse gas strategy. Update Policy, 2018. 3–4.
  • 3. A. Halff, L. Younes and T. Boersma, ‘The likely implications of the new IMO standards on the shipping industry’. Energy Policy, 126, 2019. 277–286. doi: 10.1016/j.enpol.2018.11.033.
  • 4. S.L. Wen, H. Lan, Y.Y. Hong, D.C. Yu, L.J. Zhang and P.Cheng. ‘Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system’. Applied Energy, 175, 2016. 158–167. doi: 10.1016/j.apenergy.2016.05.003.
  • 5. F. Diab, H. Lan and S. Ali, ‘Novel comparison study between the hybrid renewable energy systems on land and on ship’. Renewable and Sustainable Energy Reviews, 63, 2016. 452–463. doi: 10.1016/j.rser.2016.05.053.
  • 6. P.C. Pan, Y.W. Sun, C.Q. Yuan, X.P. Yan and X.J. Tang. ‘Research progress on ship power systems integrated with new energy sources: A review’. Renewable and Sustainable Energy Reviews, 144, 2021. 111048. doi: 10.1016/j. rser.2021.111048.
  • 7. J.H. He, Y.H. Hu, J.J. Tang and S.Y. Xue. ‘Research on sail aerodynamics performance and sail-assisted ship stability’. Journal of Wind Engineering and Industrial Aerodynamics, 146, 2015. 81-89. doi: 10.1016/j.jweia.2015.08.005.
  • 8. L. Talluri, D.K. Nalianda and E. Giuliani, ‘Techno economic and environmental assessment of Flettner rotors for marine propulsion’. Ocean Engineering, 154, 2018. 1–15. doi: 10.1016/j.oceaneng.2018.02.020.
  • 9. N.J. Van Der Kolk, I. Akkerman, J.A. Keuning and R.H.M. Huijsmans. ‘Part 2: Simulation methodology and numerical uncertainty for RANS-CFD for the hydrodynamics of wind-assisted ships operating at leeway angles’. Ocean Engineering, 201, 2020. 107024. doi: 10.1016/ j.oceaneng.2020.107024.
  • 10. Y. Ma, H.X. Bi, M.Q. Hu, Y.Z. Zheng and L.X. Gan. ‘Hard sail optimization and energy efficiency enhancement for sail-assisted vessel’. Ocean Engineering, 173, 2019. 687–699. doi: 10.1016/j.oceaneng.2019.01.026.
  • 11. R.H. Lu and J.W. Ringsberg. ‘Ship energy performance study of three wind-assisted ship propulsion technologies including a parametric study of the Flettner rotor technology’. Ships and Offshore Structures, 15, 2020. 249- 258. doi: https://doi.org/10.1080/17445302.2019.1612544. doi: 10.1080/17445302.2019.1612544.
  • 12. F. Tillig and J.W. Ringsberg. ‘Design, operation and analysis of wind-assisted cargo ships’. Ocean Engineering, 211, 2020. Article ID 107603. doi: 10.1016/j.oceaneng.2020.107603.
  • 13. I.S. Seddiek and N.R. Ammar. ‘Harnessing wind energy on merchant ships: case study Flettner rotors onboard bulk carriers’. Environmental Science and Pollution Research, 28, 2021. 32695–32707. doi: 10.1007/s11356-021-12791-3.
  • 14. S. Pezzotti, V.N. Mora, A.S. Andres and S. Franchini. ‘Experimental study of the Magnus effect in cylindrical bodies with 4, 6, 8 and 10 sides’. Journal of Wind Engineering & Industrial Aerodynamics, 197, 2020. 104065. doi: 10.1016/j.jweia.2019.104065.
  • 15. L.C. Correa, J.M. Lenz, C.G. Ribeiro and F.A. Farret. ‘Magnus Wind Turbine Emulator With MPPT by Cylinder Rotation Control’. Journal of Dynamic Systems, Measurement, and Control, 140, 2018. 101012. doi: 10.1115/1.4040212.
  • 16. A. De Marco, S. Mancini, C. Pensa, G. Calise and F. De Luca. ‘Flettner rotor concept for marine applications: a systematic study’. International Journal of Rotating Machinery. 2016. 12. Article ID 3458750. doi: 10.1155/2016/3458750.
  • 17. B.Y. Li, R. Zhang, B.S. Zhang, Q.Q. Yang and C. Guo. ‘An assisted propulsion device of vessel utilising wind energy based on Magnus effect’. Applied Ocean Research, 114 (2021), Article ID 102788. doi: 10.1016/j.apor.2021.102788.
  • 18. G. Bordogna, S. Muggiasca, S. Giappino, M. Belloli, J.A. Keuning, R.H.M. Huijsmans and A.P. van ’t Veer. ‘Experiments on a Flettner rotor at critical and supercritical Reynolds numbers’. Journal of Wind Engineering and Industrial Aerodynamics, 188 (2019), 19–29. doi: 10.1016/j. jweia.2019.02.006.
  • 19. G. Bordogna, S. Muggiasca, S. Giappino, M. Belloli, J.A. Keuning and R.H.M. Huijsmans. ‘The effects of the aerodynamic interaction on the performance of two Flettner rotors’. Journal of Wind Engineering and Industrial Aerodynamics, 196, 2020. 104024. doi: 10.1016/j. jweia.2019.104024.
  • 20. B.Y. Li, R. Zhang, Y.J. Li, B.S. Zhang and C. Guo. ‘Study of a new type of Flettner rotor in merchant ships’. Polish Maritime Research, 109 (2021), 28-41. doi: 10.2478/ pomr-2021-0003.
  • 21. J. Seifert. ‘A review of the Magnus effect in aeronautics’. Progress in Aerospace Sciences, 55, 2012. 17-45. doi: 10.1016/j.paerosci.2012.07.001.
  • 22. X.Y. Liu, Y.X. Wang, J.J. Liang and S. Wang. ‘CFD Analysis of Aerodynamic Characteristics of Ship’s Wind-Assisted Rotor Sail. Navigation of China’, doi: 1000-4653, 2019. 04-0046-05.
  • 23. X.Y. Lu. ‘Study on aerodynamic Performance of Vertical Magnus Wind Turbine’. University of Xiang Tan, May 2019.
  • 24. A. Sedaghat, I. Samani, M. Ahmadi-Baloutaki, M.E.H. Assad and M. Gaith. ‘Computational study on novel circulating aerofoils for use in Magnus wind turbine blades’. Energy, 91, 2015. 393-403. doi: 10.1016/j.energy.2015.08.058.
  • 25. N.R. Ammar and I.S. Seddiek. ‘Enhancing energy efficiency for new generations of containerized shipping’. Ocean Engineering, 215, 2020. 107887. doi: 10.1016/j. oceaneng.2020.107887.
  • 26. M. Traut, P. Gilbert, C. Walsh, A. Bows, A. Filippone, P. Stansby and R. Wood. ‘Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes’. Applied Energy, 113, 2014. 362–372.
  • 27. D. Moreira, N. Mathias, T. Morais. ‘Dual flapping foil system for propulsion and harnessing wave energy: A 2D parametric study for unaligned foil configurations’. Ocean Engineering, 215 (2020), 107875. doi: 10.1016/j. oceaneng.2020.107875.
  • 28. D. Wang and PL-F. Liu. ‘An ISPH with k–ε closure for simulating turbulence under solitary waves’. Coastal Engineering, 157, 2020. 103657. doi: 10.1016/j. coastaleng.2020.103657.
  • 29. B.S. Zhang, B.W. Song, Z.Y. Mao, W.L. Tian, B.Y. Li and B. Li. ‘A novel parametric modeling method and optimal design for savonius wind turbines’. Energies. 10 (2017), 301. doi: 10.3390/en10030301.
  • 30. D.J. Wang, K. Liu, P. Huo, S.Q. Qiu, J.W. Ye and F.L. Liang. ‘Motions of an unmanned catamaran ship with fixed tandem hydrofoils in regular head waves’. Journal of Marine Science and Technology. 24, 2019. 705-719. doi: 10.1007/ s00773-018-0583-x.
  • 31. C. Badalamenti and S.A. Prince. ‘Effects of endplates on a rotating cylinder in crossflow’. In Proceedings of the 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, USA, August 2008.
  • 32. A. De Marco, S. Mancini, C. Pensa, ‘Preliminary analysis for marine application of Flettner rotors’ in Proceedings of the 2nd International Symposium on Naval Architecture and Maritime (INT-NAM ’14), Istanbul, Turkey, October 2014.
  • 33. A. De Marco, S. Mancini, C. Pensa, R. Scognamiglio and L. Vittiello. ‘Marine application of Flettner rotors: numerical study on a systematic variation of geometric factor by doe approach’. In Proceedings of the 6th International Conference on Computational Methods in Marine Engineering (MARINE’15), Rome, Italy, June 2015.
  • 34. I.S. Seddiek and N.R. Ammar. ‘Harnessing wind energy on merchant ships: case study Flettner rotors onboard bulk carriers’. Environmental Science and Pollution Research, 28, 2021. 32695–32707. doi: 10.1007/s11356-021-12791-3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbc008ff-7af3-4d05-ad01-9b9d196b5d75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.