PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Finite element method based simulation of electrical breakage of iron-phosphate ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effect of minerals composition, particle size and shape as well as electrodes distance from iron-phosphate ore samples, was investigated by using a commercial software. Comparison between high voltage pulses and conventional crushing showed that minerals of interest in the electrical comminution product are better liberated than in the conventional comminution. In order to elucidate and confirm the experimental results, numerical simulation of electrical field distributions/intensity were performed. The software uses the finite element method, a numerical technique for calculating approximate solutions of partial differential equations with known boundary conditions. Magnetite, apatite and quartz were the basic minerals of iron-phosphate ore components, and the main material property used in the simulations was electrical permittivity. The results showed that the induced electrical field was strongly dependent on the electrical properties of minerals, the feed particle size and the location of the magnetite mineral (due to higher permittivity) in the ore. The angle of particle contact surface with high voltage electrode was an important factor in the intensity of electrical field. Smaller contact angle resulted in higher intensity of the electrical field. Electrical discharge within the material was converted to electrohydraulic discharge within the surrounding water environment by increasing the distance between the high voltage electrode and the material contact surface.
Rocznik
Strony
137--150
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
autor
Bibliografia
  • 1. ANDRES U., 1989, Parameters of disintegration of rock by electrical pulses, Powder Technology, 58, 265-269.
  • 2. ANDRES U., 1995, Electrical disintegration of rock, Mineral Processing and Extractive Metallurgy Review, 14, 87-110.
  • 3. ANDRES U., 1996. Dielectric separation of minerals, Journal of Electrostatics, 37, 227-248.
  • 4. ANDRES U., 2010. Development and prospects of mineral liberation by electrical pulses, International Journal of Mineral Processing, 97, 31-38.
  • 5. ANDRES U., JIRESTIG J., TIMOSHKIN I., 1999. Liberation of minerals by high voltage electrical pulses, Powder Technology, 104, 37-49.
  • 6. ANDRES U., TIMOSHKIN I., SOLOVIEV M., 2001. Liberation of valuable inclusions in ores and slags by electrical pulses, Powder Technology, 114, 40-50.
  • 7. ANON 1986. New ideas in minerals processing, World Mining Equipment, 10, 4-19.
  • 8. CABRI L.J., 2008. New technology for process mineralogy: Electric Pulse Disaggregation (EPD), CNT Mineral Consulting Inc. Ottawa, Canada, http://www.cnt-mc.com.
  • 9. CABRI L.J., RUDASHEVSKY N.S., RUDASHEVSKY V.N. AND GORKOVETZV.YA., 2008. Study of native gold from the Luopensulo deposit (Kostomuksha area, Karelia, Russia) using a combination of Electric Pulse Disaggregation (EPD) and Hydroseparation (HS), Minerals Engineering, 21, 463-470.
  • 10. DAL MARTELLO E., BERNARDIS S., LARSEN R.B., TRANELL G., DI SABATINO M., ARNBERG L., 2012. Electrical fragmentation as a novel rout for the refinement of quartz raw materials for trace mineral impurities, Powder Technology, 224, 209-216.
  • 11. DODBIBA G., NAGAI H., WANG L. P., OKAYA K., FUJITA T., 2012. Leaching of indium from obsolete liquid crystal displays: comparing grinding with electrical disintegration in context of LCA, Waste Management, 32(10), 1937-1944.
  • 12. HURAY P. G., 2010. Maxwell’s Equations, John Wiley & Sons, Inc., Hoboken, New Jersey.
  • 13. ITOM., OWADA S., NISHIMURA T., OTA T., 2009. Experimental study of coal liberation: electrical disintegration versus roll- crusher comminution, International Journal of Mineral Processing, 92, 7-14.
  • 14. KUFFEL E., ZAENGL W.S., KUFFEL J., 2000. High Voltage Engineering Fundamentals, Second edition published by Butterworth-Heinemann, 539.
  • 15. LASTRA R., CABRI L., WEIBLEN P., 2003. Comparative Liberation study by image analysis of Merensky Reef samples comminuted by electric- pulse disaggregation and by conventional crusher, Proceeding of XXII International Mineral Processing Congress, Cape Town, South Africa,1, 251-260.
  • 16. REDDY J.N., An Introduction to the Finite Element Method, 2005. Third Edition, McGraw-Hill Science/Engineering/Math.
  • 17. TELFORD W.M., GELDART L.P., SHERIFF R.E., 1990. Applied Geophysics, second edition, Cambridge University Press, 291.
  • 18. USOV A.F., TSUKERMAN V.A., 2006. Electric pulse processes for processing of mineral raw materials: Energy aspect. In: Proceedings of the XXIII International Mineral Processing Congress, Istanbul, Turkey, 2084-2088.
  • 19. WANG E., SHI F., MANLAPIG E., 2011. Pre-weakening of mineral ores by high voltage pulses, Minerals Engineering, 24, 455-462.
  • 20. WANG E., SHI F., MANLAPIG E., 2012A. Factors affecting electrical comminution performance, Minerals Engineering, 34, 48-54.
  • 21. WANG E., SHI F., MANLAPIG E., 2012B. Experimental and numerical studies of selective fragmentation of mineral ores in electrical comminution, International Journal of Mineral Processing, 112-113, 30-36.
  • 22. WANG E., SHI F., MANLAPIG E., 2012C. Mineral liberation by high voltage pulses and conventional comminution with same specific energy levels, Minerals Engineering, 27-28, 28-36.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbbc0de5-e877-459b-8ba1-7ebb8280de06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.