PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical investigation on punching shear behavior of an enhanced embedded column base for CFSTs

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To improve the punching shear resistance, an enhanced embedded column base for concrete-filled steel tubes has been proposed, where a pair of strengthening beams are installed on the embedded region of the steel tube by the diaphragm plates. Punching tests were first conducted on eight specimens to investigate the working mechanism of this kind of column base. The test parameters included the length and embedded depth of the strengthening beam. The test results indicated that the punching shear section initiated from the diaphragm plate, which enlarged the punching cone and improved the punching shear resistance. The numerical modelling was also performed. First, finite element models were established and validated against the test results. Full-scale models were then developed to conduct the parametric studies and enrich the database. Finally, a calculation method to evaluate the punching shear resistance of the enhanced embedded column base was proposed and validated. This calculation method takes into account the bonding force, the resistance of the concrete and stirrups on the critical section, and the contribution of the diaphragm plates and strengthening beams.
Rocznik
Strony
art. no. e157, 2023
Opis fizyczny
Bibliogr. 30 poz., fot., rys., wykr.
Twórcy
autor
  • Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
autor
  • Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
autor
  • Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
Bibliografia
  • 1. Tremblay R, Filiatrault A, Bruneau M, et al. Seismic design of steel buildings: lessons from the 1995 Hyogo-ken Nanbu earth- quake. Can J Civ Eng. 1996;23(3):727–56.
  • 2. Nakashima M, Inoue K, Tada M. Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake. Eng Struct. 1998;20(4–6):271–81.
  • 3. Han LH, Li W, Bjorhovde R. Developments and advanced applica- tions of concrete-filled steel tubular (CFST) structures: members. J Construc Steel Res. 2014;100(sep):211–28.
  • 4. Cui Y, Wang FZ, Yang CC, Hao L, He YZ. Using composite yield mechanism to mitigate seismic damage to exposed steel column base connections. Eng Struct. 2021;232(1): 111877.
  • 5. Yang XY, Kishili S. Evaluation of ultimate strength of exposed column bases considering the bearing stress of foundation con- crete. Eng Struct. 2022;268: 114712.
  • 6. Mou B, Yan XC, Qiao QY, Zhou WQ. Experimental and numeri- cal investigation on exposed RCFST column-base Joint. Steel Compos Struct. 2023;45(5):749–66.
  • 7. Xu W, Han LH, Li W. Seismic performance of concrete-encased column base for hexagonal concrete-filled steel tube: experimental study. J Constr Steel Res. 2016;121:352–69.
  • 8. Li X, Zhou T, Li J, Kuang XB, Zhao YW. Seismic behav- ior of encased CFT column base connections. Eng Struct. 2019;182:363–78.
  • 9. Zhou XH, Xu TX, Liu JP, Wang XD, Chen YF. Seismic perfor- mance of concrete-encased column connections for concrete filled thin-walled steel tube piers. Eng Struct. 2022;269: 114803.
  • 10. Lehman DE, Roeder CW. Foundation connections for circular concrete-filled tube. J Constr Steel Res. 2012;78:212–25.
  • 11. Grilli DA, Kanvinde AM. Embedded column base connections subjected to seismic loads: strength model. J Constr Steel Res. 2017;129:240–9.
  • 12. Zhu HQ, Li Y, Zhang XD. Rigidity estimation of embedded CFST column-to-beam connections. Eng Struct. 2017;147:768–81.
  • 13. Siburg C, Ricker M, Hegger J. Punching shear design of foot- ings: critical review of different code provisions. Struct Concr. 2014;15(4):497–508.
  • 14. Simões JT, Faria DMV, Ruiz MF, Muttoni A. Strength of rein- forced concrete footings without transverse reinforcement accord- ing to limit analysis. Eng Struct. 2016;112:146–61.
  • 15. Truong GT, Choi KK, Kim HS. Punching-shear behaviors of RC- column footings with various reinforcement and strengthening details. Eng Struct. 2017;151:282–96.
  • 16. Zhang WX, Li B, Hwang HJ, et al. Punching shear strength of reinforced concrete column footings under eccentric compression: experiment and analysis. Eng Struct. 2019;198: 109509.
  • 17. ACI 318–14. Building code requirements for structural concrete (ACI 318-14) and commentary (ACI 318R-14). Farmington Hills: American Concrete Institute; 2014.
  • 18. Eurocode. Design of concrete structures - Part1-1: General rules and rules for buildings. Brussels: European Committee for Stand- ardization (CEN); 2005.
  • 19. GB 50010-2010. Code for design of concrete structures. Beijing: Ministry of Housing and Urban-Rural Development of China; 2015. (in Chinese).
  • 20. Pertold J, Xiao RY, Wald F. Embedded steel column bases: I. Experiments and numerical simulation. J Construct Steel Res. 2000;56(3):253–70.
  • 21. Pertold J, Xiao RY, Wald F. Embedded steel column bases: II. Design model proposal. J Construct Steel Res. 2000;56(3):271–86.
  • 22. Tan SS, Jia C, Guo LH, Ou FS, Xu Y. Experimental investigation on punching shear behavior of the embedded column base for CFSTs. Eng Struct. 2022;263: 114371.
  • 23. Li X, Wu YP, Li XZ, Xia J, Lv HL. Punching shear strength of CFT bridge column to reinforced concrete four-pile cap connec- tions. J Bridg Eng. 2017;22(8):04017036.
  • 24. GB 50936-2014. Technical code for concrete filled steel tubular structures. Beijing: China Architecture and Building Press; 2014. (in Chinese).
  • 25. GB/T 228-2010. Metallic materials-tensile testing-part 1: method of test at room temperature. Beijing: Standards Press of China; 2010. (in Chinese).
  • 26. GB/T 50081–2002. Standard for test method of mechanical properties on ordinary concrete. Beijing: China Architecture and Building Press; 2002. (in Chinese).
  • 27. Lam D, Dai XH, Han LH, Ren QX, Li W. Behaviour of inclined, tapered and STS square CFST stub columns subjected to axial load. Thin-Walled Structures. 2012;54:94–105.
  • 28. Qian JR, Zhao ZZ, Ji XD. Test study on shear-bond capacity of steel tube-out of tube concrete interface. J Build Struct. 2015;3:5 (in Chinese).
  • 29. YB 9082-2006. Technical specification of steel-reinforced con- crete structures. Beijing: Metallurgical Industry Press; 2007. (in Chinese).
  • 30. Xue LH, Cai SH. Bond strength of composite interface of con- crete-filled steel tube column (Part II). Beijing: Building Technol- ogy; 1996. (in Chinese).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbb60bea-05c8-402f-ae88-a2c61e2baef9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.