PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface damage assessment by analysis of electrical resistance changes in graphite-based sensing skin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the method of identifying surface damage by measuring changes in resistance in graphite-based sensing skin. The research focused on analysis of conductivity anomalies caused by surface damage. Sensitivity maps obtained with Finite Element Method (FEM) in conjunction with the analytical damage model were used to build the coating evaluation algorithm. The experiment confirmed the ability of this method to identify a single elliptical-shape damage. Eight electrodes were enough to locate the damage that covered about 0.1‰ of the examined area. The proposed algorithm can prove useful in simple applications for surface condition monitoring. It can be implemented wherever it is possible to apply a thin layer of conductor to a non-conductive surface.
Słowa kluczowe
Rocznik
Strony
347--360
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, Sw. Andrzeja Boboli 8, 02-525 Warsaw, Poland
  • Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, Sw. Andrzeja Boboli 8, 02-525 Warsaw, Poland
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, 00-665 Warsaw, Poland
Bibliografia
  • [1] de Castro Martins, T., Sato, A. K., de Moura, F. S., de Camargo, E. D. L. B., Silva, O. L., Santos, T. B. R., Zhao, Z., Moeller, K., Amato, M. B. P., Mueller, J. L., Lima, R. G. & Tsuzuki, M. D. S. G. (2019). A review of electrical impedance tomography in lung applications: Theory and algorithms for absolute images. Annual Reviews in Control, 48, 442-471. https://doi.org/10.1016/j.arcontrol.2019.05.002
  • [2] Reynolds. J. M. (2011). An introduction to applied and environmental geophysics. John Wiley & Sons.
  • [3] Dickin, F. J., Waterfall, R. C., Williams, R. A., Xie, C. G., Beck, M. S., Huang, S. M., Ilyas. O., Hoyle, B. S., Hunt, A. & Lenn, C. (1992). Tomographic imaging of industrial process equipment: techniques and applications. IEE Proceedings G-Circuits, Devices and Systems, 139(1), 72-82. https://doi.org/10.1049/ip-g-2.1992.0013
  • [4] Todoroki, A., Ueda, M., & Hirano, Y. (2007). Strain and damage monitoring of CFRP laminates by means of electrical resistance measurement. Journal of Solid Mechanics and Materials Engineering, 1(8). 947-974. https://doi.org/10.1299/jmmp.1.947
  • [5] Nonn, S., Schagerl, M., Zhao, Y., Gschossmann, S., & Kralovec, C. (2018). Application of electrical impedance tomography to an anisotropic carbon fiber-reinforced polymer composite laminate for damage localization. Composites Science and Technology, 160, 231-236. https://doi.org/10.I0167/j.compscitech.2018.03.031
  • [6] Gao, X., Wei, T., Dong, H., & Song, Y. (2019). Damage detection in 2.5 DC/SiC composites using electrical resistance tomography. Journal of the European Ceramic Society, 39(13), 3583-3593. https://doi.org/10.1016/j.jeurceramsoc.2019.04.046
  • [7] Thomas, A. J., Kim, J. J., Tallman, T. N., & Bakis, C. E. (2019). Damage detection in self-sensing composite tubes via electrical impedance tomography. Composites Part B: Engineering, 177, 107276. https://doi.org/10.1016/j.compositesb.2019.107276
  • [8] Gadomski, J., & Pyrzanowski, P. (2016). Experimental investigation of fatigue destruction of CFRP using the electrical resistance change method. Measurement, 87, 236-245. https://doi.org/10.1016/j.measurement.2016.03.036
  • [9] Cagáň, J., & Michalcová, L. (2020). Impact damage detection in CFRP composite via electrical resistance tomography by means of statistical processing. Journal of Nondestructive Evaluation, 39(2), 1-12. https://doi.org/10.1007/s10921-020-00677-2
  • [10] Pyrzanowski, P., & Olzak, M. (2013). Numerical modelling of resistance changes in symmetric CFRP composite under the influence of structure damage. Composites Science and Technology, 88, 99-105. https://doi.org/10.1016/j.compscitech.2013.08.023
  • [11] Hallaji, M., Seppänen, A., & Pour-Ghaz, M. (2014). Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete. Smart Materials and Structures, 23(8), 085001. https://doi.org/10.1088/0964-1726/23/8/085001
  • [12] Dai, H., Gallo, G. J., Schumacher, T., & Thostenson, E. T. (2016). A novel methodology for spatial damage detection and imaging using a distributed carbon nanotube-based composite sensor combined with electrical impedance tomography. Journal of Nondestructive Evaluation, 35(2), 1-15. https://doi.org/10.1007/s10921-016-0341-0
  • [13] Tallman, T. N., Gungor, S., Wang, K. W., & Bakis, C. E. (2014). Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography. Smart Materials and Structures, 23(4), 045034. https://doi.org/10.1088/0964-1726/23/4/045034
  • [14] Loh, K. J., Kim, J., Lynch, J. P., Kam, N. W. S., & Kotov, N. A. (2007). Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing. Smart Materials and Structures, 16(2), 429-438. https://doi.org/10.1088/0964-1726/16/2/022
  • [15] Hou, T. C., Loh, K. J., & Lynch, J. P. (2007). Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications. Nanotechnology, 18(31). 315501. https://doi.org/10.1088/09574484/18/31/315501
  • [16] Jauhiainen, J., Pour-Ghaz, M., Valkonen, T., & Seppänen, A. (2021). Nonplanar sensing skins for structural health monitoring based on electrical resistance tomography. Computer-Aided Civil and Infrastructure Engineering, 56(12), 1488-1507. https://doi.org/10.1111/mice.12689
  • [17] Smyl, D., Pour-Ghaz, M., & Seppänen, A. (2018). Detection and reconstruction of complex structural cracking patterns with electrical imaging. NDT & E International, 99, 123-133. https://doi.org/10.1016/j.ndteint.2018.06.004
  • [18] Viets, C., Kaysser, S., & Schulte, K. (2014). Damage mapping of GFRP via electrical resistance measurements using nanocomposite epoxy matrix systems. Composites Part B: Engineering, 65, 80-88. https://doi.org/10.1016/j.compositesb.2013.09.049
  • [19] Gungor, S., & Bakis, C. E. (2016). Indentation damage detection in glass/epoxy composite laminates with electrically tailored conductive nanofiller. Journal of Intelligent Material Systems and Structures, 27(5). 679-688. https://doi.org/10.1177/1045389X15577644
  • [20] Isaac-Medina, B. K. S., Alonzo-García, A., & Avilés, F. (2019). Electrical self-sensing of impact damage in multiscale hierarchical composites with tailored location of carbon nanotube networks. Structural Health Monitoring, 18(3), 806-818. https://doi.org/10.1177%2F1475921718776198
  • [21] Tallman, T. N., & Smyl, D. J. (2020). Structural health and condition monitoring via electrical impedance tomography in self-sensing materials: a review. Smart Materials and Structures. 29(12). 123001. https://doi.org/10.1088/1361-665X/abb352
  • [22] Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486-1498. https://doi.org/10.1016/j.compscitech.2008.06.018
  • [23] Grossiord, N., Loos, J., van Laake, L., Maugey, M., Zakri, C., Koning, C. E., & Hart, A. J. (2008). High-Conductivity Polymer Nanocomposites Obtained by Tailoring the Characteristics of Carbon Nanotube Fillers. Advanced Functional Materials, 18(20), 3226-3234. https://doi.org/10.1002/adfm.200800528
  • [24] Janczak, D., Stoma, M., Wróblewski, G., Młożniak, A., & Jakubowska, M. (2014). Screen-printed resistive pressure sensors containing graphene nanoplatelets and carbon nanotubes. Sensors, 14(9), 17304-17312. https://doi.org/10.3390/s140917304
  • [25] Stepnowski, M., Janczak, D., Jakubowska, M., & Pyrzanowski, P. (2019). Detection of surface damage using resistance tomography in thin graphite layer. Materials Today: Proceedings, 12(2), 484-490. https://doi.org/10.1016/j.matpr.2019.03.153
  • [26] Loh, K. J., Hou, T. C., Lynch, J. P., & Kotov, N. A. (2009). Carbon nanotube sensing skins for spatial strain and impact damage identification. Journal of Nondestructive Evaluation, 28(1), 9-25. https://doi.org/10.1007/s10921-009-0043-y
  • [27] Kundu, P. K., Cohen, I. M., & Dowling, D. R. (2012). Fluid Mechanics (5th ed.). Elsevier Inc. https://doi.org/10.1016/C2009-0-63410-3
  • [28] Zienkiewicz, O., Lyness, J., & Owen, D. (1977). Three-dimensional magnetic field determination using a scalar potential - A finite element solution. IEEE Transactions on Magnetics, 13(5), 1649-1656. https://doi.org/10.1109/tmag.1977.1059650
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dbac4965-80a0-4f57-97a7-934ff8e83957
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.