PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sampling related issues in pod-based model reduction of simplified circulating fluidised bed combustor model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the last decades the method of proper orthogonal decomposition (POD) has been successfully employed for reduced order modelling (ROM) in many applications, including distributed parameter models of chemical reactors. Nevertheless, there are still a number of issues that need further investigation. Among them, the policy of the collection of representative ensemble of experimental or simulation data, being a starting and perhaps most crucial point of the POD-based model reduction procedure. This paper summarises the theoretical background of the POD method and briefly discusses the sampling issue. Next, the reduction procedure is applied to an idealised model of circulating fluidised bed combustor (CFBC). Results obtained confirm that a proper choice of the sampling strategy is essential for the modes convergence however, even low number of observations can be sufficient for the determination of the faithful dynamical ROM.
Rocznik
Strony
365--376
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Institute of Chemical and Process Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • 1. Barletta D., Marzocchella A., Salatino P., Kang S.G., Stromberg P.T., 2003. Modelling fuel and sorbent attrition during circulating fluidized bed combustion of coal. 17th International Fluidized Bed Combustion Conference. Jacksonville, USA, 18-21 May 2003, 341-351.
  • 2. Basu P., 1999. Combustion of coal in circulating fluidized-bed boilers: a review. Chem. Eng. Sci., 54, 5547-5557. DOI: 10.1016/S0009-2509(99)00285-7.
  • 3. Bizon K., Continillo G., 2009. Formulation and spectral reduction of the dynamical model of a circulating fluidized bed combustor. Chem. Prod. Process Model., 4, 1934-2659. DOI: 10.2202/1934-2659.1416.
  • 4. Bizon K., Continillo G., Lombardi S., Merola S.S., Sementa P., Tornatore C., Vaglieco B.M., 2010. Analysis of flame kinematics and cycle variation in a port fuel injection spark ignition engine. SAE Int. J. Engines, 2, 443-451.
  • 5. Bizon K., Continillo G., 2012. Reduced order modelling of chemical reactors with recycle by means of POD-penalty method. Comput. Chem. Eng., 39, 22-32 DOI: 10.1016/j.compchemeng.2011.10.001.
  • 6. Bizon K., Continillo G., Berezowski M., Smuła-Ostaszewska J., 2012. Optimal model reduction by empirical spectral methods via sampling of chaotic orbits. Physica D, 241, 1441-1449. DOI: 10.1016/j.physd.2012.05.004.
  • 7. Brenner T.A., Fontenot R.L., Cizmas P.G.A., O’Brien T.J., Breault R.W., 2012. A reduced-order model for heat transfer in multiphase flow and practical aspects of the proper orthogonal decomposition. Comput. Chem. Eng. 43, 68-80. DOI: 10.1016/j.compchemeng.2012.04.003.
  • 8. Breuer K.S., Sirovich L, 1991. The use of the Karhunen-Loève procedure for the calculation of linear eigenfunctions. J. Comput. Phys. 96, 277-296. DOI: 10.1016/0021-9991(91)90237-F.
  • 9. Hekmati A., Ricot D., Druault P., 2011. About the convergence of POD and EPOD modes computed from CFB simulation. Comput. Fluids, 50, 60-71. DOI: 10.1016/j.compfluid.2011.06.018.
  • 10. Hesthaven J.S., Gottlieb S., Gottlieb D., 2007. Spectral methods for time-dependent problems. Cambridge University Press, Cambridge, 117-123; 153-160.
  • 11. Holmes P., Lumley J.L., Berkooz G., 1996. Turbulence, coherent structures, dynamical systems and symmetry, Cambridge University Press, Cambridge, 88-100.
  • 12. Lombardi S., Bizon K., Marra F.S., Continillo G., 2013. Optimization of design parameters of a Stirling generator for use with a fluidized bed combustor. Int. J. Thermodyn., 16, 155-162. DOI: 10.5541/ijot.472.
  • 13. Lu B., Zhang N., Wang W., Li J., Chiu J.H., Kang S.G., 2013. 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler. AIChE J., 59, 1108-1117. DOI: 10.1002/aic.13917.
  • 14. Lucia D., Beran P.S., Silva W., 2003. Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci., 40, 51-117. DOI: 10.1016/j.paerosci.2003.12.001.
  • 15. Rajat G., Yogendra J., 2013. Error estimation in POD-based dynamic reduced-order thermal modeling of data centers. Int. J. Heat Mass Transfer., 57, 698-707. DOI: 10.1016/j.ijheatmasstransfer.2012.10.013.
  • 16. Rowley C.W., Colonius T., Murray R.M., 2001. Dynamical models for control of cavity oscillations. 7th AIAA/CEAS Aeroacoustics Conference. Maastricht, The Netherands, 28-30 May 2001, 2001-2126.
  • 17. Sirovich L., 1987. Turbulence and the dynamics of coherent structures. I – Coherent structures. Quart. Appl. Math., 45, 561-571.
  • 18. Zhang Y., Henson M.A., Kevrekidis I.G., 2003. Nonlinear model reduction for dynamic analysis of cell population models. Chem. Eng. Sci., 58, 429-445. DOI: 10.1016/S0009-2509(02)00439-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dba8b1a2-d892-46d2-80bc-2494fafd8f10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.