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Over the last decades the method of proper orthogonal decomposition (POD) has been successfully 
employed for reduced order modelling (ROM) in many applications, including distributed parameter 
models of chemical reactors. Nevertheless, there are still a number of issues that need further 
investigation. Among them, the policy of the collection of representative ensemble of experimental 
or simulation data, being a starting and perhaps most crucial point of the POD-based model reduction 
procedure. This paper summarises the theoretical background of the POD method and briefly discusses 
the sampling issue. Next, the reduction procedure is applied to an idealised model of circulating 
fluidised bed combustor (CFBC). Results obtained confirm that a proper choice of the sampling strategy 
is essential for the modes convergence however, even low number of observations can be sufficient 
for the determination of the faithful dynamical ROM.

Keywords: model reduction, proper orthogonal decomposition, circulating fluidised bed, optimal 
sampling

1. INTRODUCTION

The continuous advancements observed with computing power and hardware storage capacities available 
nowadays to researchers permit to handle detailed numerical simulation of mathematical models and 
to analyse efficiently the resulting massive data. Still, there is a demand for the development and 
improvement of model order reduction techniques (Lucia et al., 2003). Especially when it comes to 
real-time control applications, that require the use of fast and accurate models, or for detailed analysis 
of distributed dynamical models, e.g. chemical reactor models. The latter, usually given in the form of 
infinite-dimensional partial differential equations (PDEs), for practical considerations, have to be first 
reduced to a finite-dimensional dynamical system. Typically, this step is accomplished by numerical 
discretisation of spatial differential operators, yielding a system of ordinary differential equations (ODEs), 
to be then integrated in time using an appropriate numerical scheme. Classical discretisation methods, such 
as finite differences or finite elements, are relatively simple to apply, yet they produce large sets of ODEs 
which may be difficult to handle. Model reduction consists of finding a low-dimensional approximation 
for such systems. The reduction procedure is customarily accomplished by projection of the governing 
equations onto a suitable subspace. Projection methods, and particularly the Galerkin projection method 
(Hesthaven et al., 2007), permits to find low order yet accurate description of the original PDEs, provided 
that a proper choice of the functional basis is made. Considering that classical basis may fail to predict 
correctly the solution, as it happens in the case of the functional approximation of saw-tooth function 

* Corresponding author, e-mail: kbizon@chemia.pk.edu.pl
Unauthenticated

Download Date | 11/29/15 12:30 PM



cpe.czasopisma.pan.pl; degruyter.com/view/j/cpe 

K. Bizon, Chem. Process Eng., 2015, 36 (3), 365-376

366

using Fourier series (Hesthaven et al., 2007), the alternative is to build an empirical basis arising directly 
from the (simulated) behaviour of the system. Such basis can be identified by means of a method of 
proper orthogonal decomposition (POD), which, based on set of observations describing spatiotemporal 
behaviour of the model, determines a set of optimal orthonormal functions (Holmes et al., 1996) for 
the given problem. When it comes to the order reduction of the evolutionary PDEs, such observations 
– spatial profiles of the solution collected over time, also called snapshots – generally originate from 
the numerical simulation of the model obtained using classical discretisation schemes, to which we will 
refer to as the full order model (FOM). It should be noted that, once the snapshots are obtained, the POD 
is a merely algebraic linear procedure, in which the governing equations and boundary conditions do 
not come into play. Hence, it would be natural to think to exploit the degree of freedom consisting of 
the choice of the snapshots to be employed for the generation of the ROM, in order to obtain the best 
performing ROM for a given number of reduced variables, or conversely obtain the minimum number 
of variables necessary to achieve a given accuracy. In general, the lower the number of snapshots, the 
lower the computing time and storage needs. In this view, the sampling of the snapshots, being the very 
first step, is most crucial for accuracy of the reduced order model (ROM) to be determined. While the 
exploration of the parameter space is a well established policy for the generation of a global POD i.e. 
able to capture correctly the overall dynamics of the system as the parameters vary (Zhang et. al, 2003), 
still not much has been done in terms of the influence of the total number of snapshots employed, or their 
temporal distribution, on the ROM performance.

In this study, the POD based reduction procedure, together with sampling-related issues, is illustrated on 
a relatively simple one-dimensional dynamical model of circulating fluidised bed combustor (CFBC) under 
isothermal operation (Bizon and Continillo, 2009; Bizon and Continillo, 2012). Apparently, in parallel to 
the spread of commercial applications of CFBC technology, a number of models and software tools has 
been developed (Basu, 1999). Their level of sophistication is growing steadily, not only in terms of the 
number of the dimensions – from zero-dimensional (Lombardi et al., 2013) to three-dimensional models 
(Lu et al., 2013) – but also in terms of the considered phenomena. Yet, while complex three-dimensional 
models based on the Navier-Stokes equations found their application in the development of new reactor 
design, the simple dynamical model is irreplaceable for the detailed steady-state and dynamical analysis of 
system behaviour. This involves a global evaluation of the influence of the operational parameters at steady 
operation, i.e. excess air, fluidisation velocity, fluid properties, and many others; or dynamic prediction 
of the system response to sudden changes of process conditions, e.g. fuel feed rate. Despite the simplicity 
of the CFBC model proposed here, the solution of the FOM still remains quite expensive in terms of 
computational time, and is expected to increase when adding an unsteady energy balance equation. Hence, 
detailed model analysis and its successive phenomenological extension still necessitates the construction 
of a light yet faithful ROM.

2. MODEL OF CIRCULATING FLUIDISED BED COMBUSTOR

With reference to the classical reactor theory, the circulating fluidised bed combustor (CFBC) system 
(Fig. 1) is viewed here as a plug flow tubular heterogeneous reactor, followed by a gas-solid separator 
(cyclone) and a loop-seal modeled as a continuously stirred tank (CST).

The proposed dynamical model, based on the framework presented in Barletta et al. (2003), is isothermal 
in the present formulation and integrates a simplified fluid dynamics with a quasi-steady approximation 
made for inter-phase momentum exchange. The riser is subdivided vertically into two zones that is a dense 
bed present at the bottom and a dilute region above it, the latter composed of a splashing zone and 
a freeboard. Both volatile matter and ash content of the fuel are neglected, therefore combustion modelling 
is simplified to a single one-step heterogeneous reaction (C + O2 → CO2). More details concerning the 
model assumptions, constitutive relationships and correlations used in the model formulation can be found 
in (Bizon and Continillo, 2009; Bizon and Continillo, 2012).
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Fig. 1. Scheme of CFBC with indicated flow pattern/recycle of the process streams

The fuel population balance equation is simplified by lumping fixed carbon into so-called coarse char 
particles, fed into the combustor, and fine char, generated by combustion-assisted attrition of coarse char. 
Hence, in the dimensionless form, the mass balance equations for solid phase can be written as:

 ( )c cc
a c c c

v

x

αα σ α σ α
τ

∂∂
+ = − −

∂ ∂
  (1)

 ( )f ff
a c f f

v

x

αα
σ α σ α

τ
∂∂

+ = −
∂ ∂

  (2)

where αi and vi are, respectively, the dimensionless suspension density and the velocity of the coarse 
(i = c) and fine (i = f) fraction of the char, respectively, while σi denotes a dimensionless consumption rate: 
due to attrition, σa, and due combustion of coarse and fine particles – σc and σf. The associated boundary 
conditions are:

 ( ) ( ) ( )τακτατ reccrecccc FFv ,1,0,0 −=   (3)

 ( ) ( ) ( )τατατ recfrecff Fv ,,0,0 =   (4)

where Fc is a dimensionless fed mass flow rate of the coarse particles, while Frec is a mass flow rate of 
recycled solids. The densities of recycled solids, αi,rec, are calculated from the CST mass balance:
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where ηi denotes cyclone efficiency. Finally, the mass balance for carbon dioxide with the associated 
boundary condition is:
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The void fraction ε and the corresponding velocity profiles vi are calculated from a steady state fluid 
dynamic model. The model distinguishes a primary and a secondary air stream, both entering at ambient 
temperature. However to avoid discontinuities in the spatial domain, in this demonstrative study only the 
primary air flow is considered, therefore Qsec = 0. In all simulations, the initial profiles of solid suspension 
densities and carbon dioxide concentration are set to be equal zero. To provide a general insight into the 
physics of the presented results, the basic (dimensional) parameters used in this study are collected in 
Table 1.

Table 1. Basic parameters used in the reference simulation

Coarse char cyclone efficiency, ηc 1
Fine char cyclone efficiency, ηf 0.9
Coarse particle diameter, dc [mm] 3
Fine particle diameter, df [µm] 100
Bed particle diameter, db[µm] 300
Fluidisation velocity, u0 [m/s] 5
Temperature, T [K] 1123

Excess air factor, l 1.2

3. MODEL REDUCTION TECHNIQUE

3.1. Proper orthogonal decomposition

The aim of the POD method is to decompose any given ensemble of data into an optimal, in the sense 
of L2 norm, set of orthogonal basis functions or modes. Denote by u(x, ti) a scalar field of numerical or 
experimental observations, where x is an N-dimensional vector and ti, i = 1, … M represents sampling time 
instances. It can be demonstrated (Holmes et al., 1996) that the POD basis ( ){ }

1

N

n n
φ

=
x

 
can be obtained by 

solving the eigenvalue problem:

 Kϕ = λϕ  (9)

where NN ℜ×ℜ∈K  is an autocorrelation matrix of dimension N, defined as:

 ( ) ( ) ( )T, ,i iu t u t=K x, y x y   (10)

with +·, denoting ensemble average over the number of samples M. Apparently, each eigenfunction ϕn is 
associated with the eigenvalue λn: the ordering of the eigenvalues from the largest to the smallest induces 
and ordering of the corresponding functions, from the most to the least important. A very common practice 
is to use then a so-called cumulative correlation energy captured by the K leading modes, defined as:

 

∑

∑

=

==
N

n
n

K

n
n

KE

1

1

λ

λ
  (11)

as a criterion for the determination of the truncation degree K of the POD reduced order model. Once 
determined the value K (e.g. by taking the value for which Ek > 99%), the solution u(x, ti) can be expressed, 
in a truncated form, as:
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 ( ) ( ) ( )xx ∑
=

≈
K

n
niNi tatu

1

, φ   (12)

where K ≪ N is a truncation order, whereas an, n = 1, … K are modal coefficients that can be determined 
by the orthogonal projection of the field u(x, ti) onto the basis, i.e.:

 ( ) ( ) ( )( )xx niin tuta φ,,=   (13)

where (×,×) is the inner product, or solving the ODEs system resulting from the Galerkin projection of the 
FOM onto the basis (more details in the Subsection 3.2).

When the number of gridpoints N is very large (e.g. when dealing with observations coming from CFD 
simulations), both storage and calculation requirements of the eigenvalue problem defined by Eq. (9) 
become very high, hence the above described approach (denoted sometimes as direct method) becomes 
impractical or even out of question. In case of N ≫ M, the use of an alternative approach, called also 
method of snapshots or strobes (Sirovich, 1987), becomes preferable, as it permits to reduce the size of the 
eigenvalue problem that has to be solved from N to M ≪ N. In particular, Sirovich (1987) demonstrated 
that the eigenfunctions ϕn can be written as a linear combination of the given scalar field, that is: 

 ( ) ( ) ( )i

M

i
inn t ,ut xx ∑

=

=
1

ψφ   (14)

Where ψn can be obtained from:

 ψ λψ=C   (15)

where MM ℜ×ℜ∈C  is defined as:

 ( ) ( ) ( )T
i iu , t u , t=C x, y x y   (16)

The use of the method of snapshots yields results almost identical – up to the machine accuracy – to those 
obtained by the direct method.

3.2. Galerkin method

Consider the problem of spatiotemporal evolution of the quantity u(x, t) represented by a PDE of the form 
(Hesthaven et al., 2007):

 ( ) [ ] 0,,, ≥∈=
∂
∂

tbaxuD
t

u   (17)

 ( )( ) ( )( ) 0,,,, ≥== thtbuBgtauB RL   (18)

 ( ) ( ) [ ] 0,,,0, =∈= tbaxxfxu   (19)

where D is a non-linear operator that may involve spatial derivatives of the dependent variable u, while BL 
and BR are the boundary operators. In spectral methods, and in particular in Galerkin method, the solution 
is sought in the form:

 ( ) ( ) ( )xtatxu
K

n
nnK ∑

=

=
1

, φ   (20)
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where ϕn(x) are elements of a known, prescribed a priori, orthonormal spatial basis ( ){ }
1

N

n n
xφ

=
. The 

unknown temporal coefficients an(t), n = 1, … K, are obtained by requiring the residual:

 ( ) ( ) ( ),
, ,K

K K

u x t
R x t Du x t

t

∂
= −

∂
  (21)

to be orthogonal to the basis, that is:

 ( ) ( )( ), , 0, 1, ...,K mR x t x m Kφ = =   (22)

From the orthonormality of the basis functions, in this particular case the POD modes, with respect to 
the chosen inner product (×,×) this procedure yields a low-dimensional system of ODEs consisting of K 
equations, namely:

 
1

, , , 1, ...,
K

m
n n m

n

a
D a n m K

t
φ φ

=

 ∂  = =  ∂   
∑   (23)

with the initial condition determined by the orthogonal projection of the PDEs’ initial condition given by 
Eq. (19) on to the basis, i.e.:

 ( ) ( )0 , , 1, ...,m ma f m Kφ= =   (24)

The number of ODEs, K, defined by Eq. (23), is much smaller than N, where N denotes the number of ODEs 
arising from the discretisation of the PDEs using some standard approach, for example finite difference 
or finite element method.

3.3. Sampling problem

It is evident that the choice of the approach – the direct method or the snapshots method – is determined 
by the form, i.e. size, of the data set available. If the observations u(x, ti) consists of a long time history 
with low spatial resolution, which is typical of coarse numerical simulations or experimental data collected 
employing a limited number of sensors (Rajat and Yogendra, 2013), the application of the direct method is 
appropriate. On the other hand, for data with a moderate time history but high spatial resolution, e.g. data 
resulting from high-dimensional numerical simulation (Hekmati et al., 2011) or experimental measurements 
characterised by high spatial resolution, for instance performed by optical imaging (Bizon et al., 2010), the 
method of snapshots becomes favourable. In the second case, while the spatial dimension N is imposed by 
the computational grid or the camera resolution, both the choice the number M of the observations and their 
temporal distribution are rather arbitrary. It is well known that important dynamics must be contained in 
the snapshots (Rowley et al., 2001); yet, the choice of the optimal number of snapshots and the sampling 
time step are open questions.

According to Breuer and Sirovich, 1991, the number of snapshots M can be roughly estimated on the basis 
of the convergence of the discrete eigenspectrum λn to the continuous eigenspectrum λn

¥, or to the discrete 
eigenspectrum obtained for M 

¥
 ® ¥. 

A similar approach, based on the convergence of the POD modes, was introduced in Hekmati et al., 2011, 
measured in terms of a correlation coefficient defined as:

 
M
n

M
nnn

n
M
nM

n

φφφφ

φφ
ρ

∞∞

∞

=   (25)

where ϕn
¥, denotes the n-th mode of the reference case (calculated with M 

¥
 ® ¥) while ϕn

M denotes the 
n-th mode of test case (M ≪ M 

¥). 
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4. RESULTS AND DISCUSSION

In order to obtain a high-fidelity solution of the system described by Eqs. (1-8), fundamental for the 
determination of the POD basis and required as a reference in the evaluation of the method performance, 
in the first step the FOM was constructed. To this aim, system of PDEs describing mass balances in the 
riser of the CBFC loop was first approximated in space by means of finite differences with staggered grid, 
employing N = 500 spatial nodes. Then, the Adams-Moulton implicit method with time-adaptive integration 
step was used to solve system of 1500 ODEs resulting from the discretisation, together with two ODEs 
describing coarse and fine fractions of the char in the CST placed in the solid recycle loop (see Fig. 1).

Figure 2 shows representative snapshots of the coarse (Fig. 2a) and fine (Fig. 2b) char concentration, 
being an input for the POD procedure. It can be noted that the coarse char suspension density profile is 
decreasing along the riser height (Fig. 2a). This is clearly the result of the coarse char consumption due 
to combustion and attrition. In the bottom bed zone (up to x = 0.1) char density values are very high, as 
an outcome of much lower particle velocities and limited diffusion of oxygen. This is due to the presence 
of the dense matrix of inert bed material. Char density decreases drastically right above the dense bed. 
Moreover, in the early transient, coarse char concentration close to the feed port, i.e. at the bottom of the 
reactor, remains almost constant (αc(0) » 1.2⋅10-3) since the presence of coarse particles in this zone results 
only from the feed of fresh fuel particles. As soon as the recycle of unburned fuel initiates, depending 
on particle residence time both in the riser and loop-seal modeled as a continuous stirred tank, it starts to 
increase and eventually, at steady state, approximately doubles its value (αc(0) = 2.44⋅10-3). Further, the 
suspension density profiles of fines (Fig. 2b) reflect a competition of two processes – fines generation due 
to coarse char attrition and successive fines burn-out. In the early transient, this competition reveals through 
the presence of a single concentration peak, in the correspondence of the upper part of the dense zone. 
Then, at steady state, a second peak can be observed in the correspondence of the reactor inlet, resulting 
from the recycle of unburned fines.
 

Fig. 2. Snapshots of coarse (a) and fine char concentration (b) obtained from FOM simulations

A question that need to be answered now is: what should be the ensemble size used in the POD procedure, 
keeping in mind that the objective is to minimise the approximation error of the resulting ROM, without 
neglecting the computational cost of the determination of the basis. Remember that the number of snapshots 
M will affect the computational complexity of the matrix multiplication (Eq. 10) in the direct approach, and 
the size of the eigenvalue problem (Eq. 15) to be solved in the method of snapshots. Hence, recalling the 
issue of eigenvalue spectra convergence (Breuer and Sirovich, 1991), the POD is performed, separately for 
each state variable, on ensembles of different sizes, varying from M = 25 and M = 2500 (the latter adopted 
as a reference value). Each data ensemble consists of snapshots equally spaced in time, from transient and 
steady state. Although a similar criterion for the choice of M has been previously adopted in Bizon and 
Continillo (2009), where the behaviour of the ROM in the early transient was investigated, the relationship 
between the number of snapshots and approximation error of the ROM was not investigated further.
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Fig. 3. Eigenvalue spectrum of coarse char concentration for different number of snapshots (a) and leading four 
eigenvalues as a function of the number of snapshots (b).

Figure 3a shows the initial parts of representative eigenspectra (for M = 25, M = 250 and M = 2500) of the 
POD modes determined for coarse particles. Fast descent of the spectra indicates that, as a result of the low 
spatiotemporal complexity of the solution, a very small number of leading modes is carrying significant 
information: indeed, for each state variable and for each sampling strategy, the cumulative energy of the 
first mode, E1 defined by Eq. (11) is already higher than 99%. Also, when M increases, the computed 
spectrum approaches the reference spectrum, i.e. the one determined using as many as 2500 snapshots.

Fig. 4. Comparison of the axial concentration of fine char at time t = 50 obtained using FOM, ROM1 and ROM4 
(a) and comparison of the error on the fine char concentration for M = 25, 250 and 2500

Despite of a very high energy content in the first mode, the ROM constructed by means of the Galerkin 
projection of the FOM onto the first mode only (for each state variable), denoted as ROM1 in Fig. 4a, fails 
completely to predict the transient behaviour of the system. It is therefore necessary to add higher order 
modes to capture the model behaviour in the entire time interval of interest. Indeed, only the steady state 
approximation of the solution obtained by ROM1 (not reported here) can be considered as acceptable, even 
though obtained with only 5 ODEs instead of 1502: three resulting from the projection of PDEs onto first POD 
modes and two describing the mass balance of the CST present in the recycle loop. Adding more modes in 
reduced order approximation results in much higher, even in the early transient, accuracy (ROM4 in Fig. 4a).

Considering again the eigenspectra evaluated previously (Figure 3) one could conclude that several 
hundreds of snapshots should provide convergence of the leading eigenvalues and hence a faithful POD 
basis. However this is not confirmed by another criterion, i.e. correlation coefficient of POD modes. In 
fact, only the first modes – ρ1

25 = 0.999 and ρ1
250 = 0.999 for each state variable – appear not to be affected 

by the sampling policy (Table 2). 
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Table 2. Correlation coefficient ρn
M of POD modes

Coarse char, αc Fine char, αf CO2, αCO2 
M = 25 M = 250 M = 25 M = 250 M = 25 M = 250

n = 1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
n = 2 0.2220 0.9465 0.9993 0.9992 0.9953 0.9919
n = 3 0.1208 0.3461 0.9651 0.4102 0.8749 0.9868

Hence, to provide an overall measure of the effect of the sampling policy, an average relative least-square 
truncation error is defined as: 

 
( ) ( ) ( )

( )

2

1
2

,
1

,

K

i n i n
n

K

i

u t a t

N u t

ψ
ε =

−
=

∑x x

x
  (27)

where K denotes truncation order, i.e. number of modes employed in the approximation, whereas 

( ) ( )
1

K

n i n
n

a t ψ
=
∑ x  is the approximated solution, with ak(ti) determined by solving the ROM in the form 

of dynamical ODEs defined by Eq. (23). Unlike the projection method defined by Eq. (13) and used by 
Brenner et al. (2012) in the evaluation of the sampling strategy onto the ROM performance, the error 
calculated for the solution obtained from dynamic ROM determined by Galerkin projection accounts not 
only for the effect of spatial approximation but also numerical integration (e.g. time lag with respect to 
FOM). 

It is interesting to examine now the values of the error of the solution obtained from the ROM employing 
the reference basis (M = 2500) and the basis determined from very low number of observations (M = 25). 
As it can be seen in Figure 4b, showing the average relative least-square error for fine char, except for the 
very first value of K (i.e. 1 and 2), the values of eK are not influenced by the sampling policy. This could 
be surprising, however one should remember that both basis employed here have still empirical character. 
Moreover, while use of very high resolution data is out of question in calculation of the modal coefficient 
by means of the projection of the data onto basis (Eq. (13)), relatively low number of observations M can 
be sufficient to determine the basis, which combined with adequate choice of integration procedure delivers 
fast and faithful dynamic ROM. Thus, in choice of sampling strategy the intrinsic optimality of the POD 
should be unified with model generality: less data may in fact deliver more generic and more stable modes, 
not overloaded by redundant information or, for example, by linearly dependent observations.

Fig. 5. Comparison of fine char concentration at steady state at the outlet (a) and average relative least-square 
truncation error (b) as a function of excess air ratio
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The last part of this study concerns the validity of the determined POD bases at off-reference conditions, 
i.e. when model parameters vary. Both dynamic and steady state behaviour of the system is considered. In 
general, by reason of its empirical origin, the ROM determined by the projection of the FOM onto the POD 
basis determined from the unique solution is not expected to be valid over too wide a range of operating 
conditions, especially when parameter variations lead to qualitative changes of the system behaviour, 
e.g. occurrence of bifurcation. But again, there is no systematised snapshot generation procedure that 
could provide a universal POD basis, except for some ad hoc procedures in which certain global bases 
are obtained from a combination of data originating from different simulations, conducted for different 
values of the key parameter.

Figure 5a shows the effect of the variation of the excess air ratio, l, on the concentration of unburned fines 
at the outlet. In order to adjust the value of l the fuel feed rate was varied, while keeping constant all other 
parameters. Starting from relatively high values of αf(1) for near stoichiometric condition (l = 1.1), the 
combustion efficiency improves with increasing excess air ratio. However as expected, this improvement 
becomes less significant above 20% excess air. Comparing the outlet values obtained using FOM and 
ROMs, it can be observed that, whilst the ROM built from 250 snapshots follow the FOM solution over 
the entire explored range of l, the one obtained from 25 snapshots profiles visibly deviates from the FOM 
at off-reference conditions. This effect is even better reflected by the error values shown in Figure 5b – the 
error of the ROM exhibits a characteristic minimum at the reference value (l = 1.2) of the excess air ratio, 
at which the solution was sampled to build the basis, and tends to increase when the value of l changes, 
yet, it has acceptable order of magnitude. 

Fig. 6. Transient fuel feed rate (a) and response of fine char concentration at the outlet obtained using FOM, 
ROM1 and ROM4 (b)

Eventually, the performance of ROM in transient operation is verified. As previously, the fuel feed rate is 
varied stepwise, now in time (Fig. 6a) and dynamic response of the ROM to this variation is evaluated. 
Figure 6b reports outlet values of the fine concentration obtained by means of FOM and two ROMs, 
both built from snapshots sets consisting 25 solution profiles. As expected, ROM1 fails completely in 
the determination of the dynamical response of the system, while the ROM build by the projection of the 
original FOM onto 4 modes (=14 ODE instead of initial 1502), follows accurately dynamic profile of fine 
char concentration at the combustor outlet. 

5. SUMMARY AND CONCLUSIONS

This paper discusses a POD-based approach aimed at the construction of reduced order models, applied to an 
idealiaed model of isothermal CFBC. The results presented here show that both POD modes and associated 
eigenspectra can be highly sensitive to the number of realisations, called customarily snapshots, even 
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when determined from a relatively simple solution, from the point of view of spatiotemporal complexity. 
Nevertheless, as demonstrated in this study there is no direct correlation between the convergence of the 
eigenvalues (or eigenmodes) and the actual performance of the resulting ROM. This indicates that the only 
solid criterion for the choice of sampling policy remains the approximation error of the ROM. Furthermore, 
the possibility emerges of constructing a faithful basis from a very low number of observations, which 
could be of the great importance when applied to 2D or 3D problems, or when determining empirical modes 
from limited number of experimental observations. The method itself permits to reduce significantly, with 
no loss in the accuracy, the order of the original system and thus computational time, which is especially 
important in real-time control applications and for the detailed analysis of distributed dynamical models 
characterised by large number of operating parameters.

SYMBOLS

a modal coefficient
C autocorrelation matrix belonging to MM ℜ×ℜ  
d particle diameter, m
E cumulative correlation energy of basis functions
F dimensionless mass flow rate (= F/Fref)
F mass flow rate, kg/s
K autocorrelation matrix belonging to NN ℜ×ℜ  
H height of the riser, m
N number of gridpoints
M number of snapshots
Q dimensionless volumetric flow rate,  (= Q /Qref)
Q volumetric flow rate, m3/s
r consumption rate due to combustion or attrition, s-1

S cross section of the riser, m2

t time, s
T temperature, K
u velocity, m/s
v dimensionless velocity (= u/uref) 
V loop-seal volume, m3

α dimensionless suspension density (= ρ/ρref) 
ε voidage
φ POD basis function
κ1 dimensionless parameter in Eq. (3) (= Fc,ref /(uref ρref S)) 
κ2 dimensionless parameter in Eq. (5) and Eq. (6) (= V/HS) 
λ excess air factor or POD eigenvalue
η cyclone efficiency
ρ  suspension density, kg/m3 
σ dimensionless consumption rate (= rH/uref) 
τ dimensionless time (= turef/H) 

Subscripts
0 refers to superficial velocity
a refers to attrition
b refers 
c refers to coarse char
f refers to fine char
prim refers to primary air
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rec refers to recycled solids
ref refers to reference value
sec refers to secondary air
tot refers to total 
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