PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Moisture analysis of building walls using tomographic measurements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza wilgotności ścian budynków za pomocą pomiarów tomograficznych
Języki publikacji
EN
Abstrakty
EN
The article presents the analysis of building walls humidity by means of tomographic measurements. The use of modern tomographic techniques allows for spatial assessment of humidity levels. The proposed application solves the inverse problem in electrical tomography. The measuring system contains special electrodes for measuring humidity. The application includes a number of different methods of image reconstruction, such as the level set methods, LARS, or elastic net.
PL
W artykule przedstawiono analizę wilgotności ścian budynków za pomocą pomiarów tomograficznych. Zastosowanie nowoczesnych technik tomograficznych pozwala na przestrzenną ocenę poziomu wilgotności. Proponowane zastosowanie rozwiązuje zagadnienie odwrotne w tomografii elektrycznej. System pomiarowy zawiera specjalne elektrody do pomiaru wilgotności. Aplikacja obejmuje szereg różnych metod reonstrukcji obrazu, takich jak metoda zbiorów poziomicowych, LARS, czy elastic net.
Rocznik
Strony
106--109
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
  • Research & Development Centre Netrix S.A.
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
autor
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
autor
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
Bibliografia
  • [1] Rymarczyk T., Tchorzewski P., Niderla K., Adamkiewicz P., Sikora J., Examination of moisture condition of buildings using electrical tomography, 2019 Applications of Electromagnetics in Modern Engineering and Medicine, PTZE 2019, 2019, 193-197
  • [2] Dušek J., Hladký D., Mikulka J., Electrical Impedance Tomography Methods and Algorithms Processed with a GPU, In PIERS Proceedings, 2017, 1710-1714.
  • [3] Goetzke-Pala A., Hoła J., Influence of burnt clay brick salinity on moisture content evaluated by non-destructive electric methods. Archives of Civil and Mechanical Engineering, 16 (2016), No. 1, 101-111.
  • [4] Krawczyk A., Korzeniewska E., Łada-Tondyra, E. Magnetophosphenes - History and contemporary implications, Przeglad Elektrotechniczny, 94 (2018), No 1, 61-64.
  • [5] Korzeniewska E., Szczesny A., Parasitic parameters of thin film structures created on flexible substrates in PVD process , Microelectronic Engineering, 193 (2018), 62-64.
  • [6] Valis D., Mazurkiewicz D., Application of selected Levy processes for degradation modelling of long range mine belt using real-time data, Archives of Civil and Mechanical Engineering, 18 (2018) , No. 4, 1430-1440.
  • [7] Valis D., Mazurkiewicz D., Forbelska M., Modelling of a Transport Belt Degradation Using State Space Model, Conference: IEEE International Conference on Industrial Engineering and Engineering Management (IEEE IEEM)Location: Singapore, Dec. 10-13, 2017, Book Series: International Conference on Industrial Engineering and Engineering Management IEEM, 2017, 949-953.
  • [8] Zhang Z., A review of rising damp in masonry buildings. Advanced Polymer and Composite Research, 2010.
  • [9] Ziolkowski M., Gratkowski S., Zywica A. R., Analytical and numerical models of the magnetoacoustic tomography with magnetic induction, COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., 37 (2018), No. 2, 538-548.
  • [10] Ren S., Soleimani M., Xu Y., Dong F., Inclusion boundary reconstruction and sensitivity analysis in electrical impedance tomography, Inverse Problems in Science and Engineering, 26 (2018), No. 7, 1037-1061
  • [11] Kozłowski E., Mazurkiewicz D., Żabiński T., Prucnal S., Sęp J., Assessment model of cutting tool condition for real-time supervision system, Eksploatacja i Niezawodnosc - Maintenance and Reliability, 21 (2019); No 4, 679-685
  • [12] Vališ D, Hasilová K., Forbelská M, Vintr Z, Reliability modelling and analysis of water distribution network based on backpropagation recursive processes with real field data, Measurement 149 (2020), 107026
  • [13] Kowalska A., Banasiak R., Romanowski A., Sankowski D., Article 3D-Printed Multilayer Sensor Structure for Electrical Capacitance Tomography, 19 (2019), Sensors, 3416
  • [14] Goclawski J., Korzeniewska E., Sekulska-Nalewajko J. et al., Extraction of the Polyurethane Layer in Textile Composites for Textronics Applications Using Optical Coherence Tomography, POLYMERS, 10 (2018), No. 5, 469
  • [15] Galazka-Czarnecka, I.; Korzeniewska E., Czarnecki A. et al., Evaluation of Quality of Eggs from Hens Kept in Caged and Free-Range Systems Using Traditional Methods and Ultra- Weak Luminescence, Applied sciences-basel, 9 (2019), No. 12, 2430.
  • [16] Adler A., Lionheart W., Uses and abuses of EIDORS: An extensible software base for EIT, Phys. Meas., 27 (2006), 25- 42.
  • [17] Beck M. S., Byars M., Dyakowski T., Waterfall R., He R., Wang S. J., Yang W. Q., Principles and Industrial Applications of Electrical Capacitance Tomography, Measurement and Control, September, 30 (1997), No. 7.
  • [18] Borcea L, Electrical impedance tomography, Inverse Problems, 18 (2002), 99-136.
  • [19] Chaniecki, Z., Romanowski A., Nowakowski J., Niedostatkiewicz M., Application of twin-plane ECT sensor for identification of the internal imperfections inside concrete beams Grudzien, IEEE Instrumentation and Measurement Technology Conference, 2016, 7520512.
  • [20] Dickin F., Wang M., Electrical resistance tomography for process applications, Measurement Science and Technology, 7 (1996), No. 3, 247-260.
  • [21] Grudzien K., Romanowski A., Chaniecki Z., Niedostatkiewicz M., Sankowski D., Description of the silo flow and bulk solid pulsation detection using ECT, Flow Measurement and Instrumentation, 21 (2010), No. 3, 198-206.
  • [22] Holder D., Introduction to biomedical electrical impedance tomography Electrical Impedance Tomography Methods, History and Applications, Bristol, Institute of Physics, 2005.
  • [23] Karhunen K., Seppänen A., Lehikoinen A., Monteiro P. J., Kaipio J. P., Electrical Resistance Tomography Imaging of Concrete, Cement and Concrete Research, 40 (2010), 137- 145.
  • [24] Kryszyn J., Smolik W., Toolbox for 3D modelling and image reconstruction in electrical capacitance tomography, Informatics Control Meas. Econ. Environ. Prot., 2017.
  • [25] Kryszyn J., Smolik W., Toolbox for 3d modelling and image reconstruction in electrical capacitance tomography, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 137-145.
  • [26] Lee Y., Nguyen V., Wang D., On Variable and Grouped Selections of the Elastic Net, Report CS532, 2016, 1-24.
  • [27] Majchrowicz M., Kapusta P., Jackowska-Strumiłło L., Sankowski D., Acceleration of image reconstruction process in the electrical capacitance tomography 3d in heterogeneous, multi-gpu system, Informatyka, Automatyka, Pomiary w PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 4/2020 109 Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 37-41.
  • [28] Mosorov V., Grudzień K., Sankowski D., Flow velocity measurement methods using electrical capacitance tomography, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ), 7 (2017),No.1, 30-36.
  • [29] Rybak G., Chaniecki Z., Grudzień K., Romanowski A.., Sankowski D., "Non-invasive methods of industrial process control, Informatyka", Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ), 4 (2014), No. 3, 41-45.
  • [30] Osher S., Fedkiw R., Level Set Methods: An Overview and Some Recent Results, Journal of Computational Physics, vol. 169, 2001, pp. 463-502.
  • [31] Romanowski A., Big Data-Driven Contextual Processing Methods for Electrical Capacitance Tomography, in IEEE Transactions on Industrial Informatics, 15 (2019), No. 3, 1609- 1618.
  • [32] Romanowski A., Contextual Processing of Electrical Capacitance Tomography Measurement Data for Temporal Modeling of Pneumatic Conveying Process, 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE, 2018, 283-286.
  • [33] Rymarczyk T, Kłosowski G. Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 21 (2019); No. 2, 261-267
  • [34] Rymarczyk, T.; Kozłowski, E.; Kłosowski, G.; Niderla, K. Logistic Regression for Machine Learning in Process Tomography, Sensors, 19 (2019), 3400.
  • [35] Kłosowski G., Rymarczyk T., Gola A., Increasing the reliability of flood embankments with neural imaging method. Applied Sciences, 8 (2018), No. 9, 1457.
  • [36] Rymarczyk T., Adamkiewicz P., Polakowski K., Sikora J., Effective ultrasound and radio tomography imaging algorithm for two-dimensional problems, Przegląd Elektrotechniczny, 94 (2018), No 6, 62-69
  • [37] Rymarczyk T., Szumowski K., Adamkiewicz P., Tchórzewski P., Sikora J., Moisture Wall Inspection Using Electrical Tomography Measurements, Przegląd Elektrotechniczny, 94 (2018), No 94, 97-100
  • [38] Duda K., Adamkiewicz P., Rymarczyk T., Niderla K., Nondestructive Method to Examine Brick Wall Dampness, International Interdisciplinary PhD Workshop Location: Brno, Czech Republic Date: SEP 12-15, 2016, 68-71
  • [39] Soleimani M., Mitchell CN, Banasiak R., Wajman R., Adler A., Four-dimensional electrical capacitance tomography imaging using experimental data, Progress In Electromagnetics Research, 90 (2009), 171-186.
  • [40] Smolik W., Kryszyn J., Olszewski T., Szabatin R., Methods of small capacitance measurement in electrical capacitance tomography, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 105-110.
  • [41] Wajman R., Fiderek P., Fidos H., Sankowski D., Banasiak R., Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination, Measurement Science and Technology, 24 (2013), No. 6, 065302.
  • [42] Wang M., Industrial Tomography: Systems and Applications, Elsevier, 2015.
  • [43] Ye Z., Banasiak R., Soleimani M., Planar array 3D electrical capacitance tomography, Insight: Non-Destructive Testing and Condition Monitoring, 55 (2013), No. 12, 675-680
  • [44] Zhao J., Su C., Ren H., Qin L., Dong B., Xing F., Application of electrical resistance tomography to damage detection in concrete, 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, 2016, 4746-4749.
  • [45] Lopato P., Chady T., Sikora R., Ziolkowski M., Full wave numerical modelling of terahertz systems for nondestructive evaluation of dielectric structures, 32 (2013), No. 3. 736 - 749.
  • [46] Szczęsny A., Korzeniewska E., Selection of the method for the earthing resistance measurement, Przegląd Elektrotechniczny, 94 (2018), No. 12, 178-181.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dba6f3bc-72bb-4fa6-83bc-712b497dc50a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.