PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effectiveness factor of two-dimensional ring-shaped catalyst pellets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of hollow catalytic support improves the utilization of the catalytic material because of the absence of the pellet core, and moreover ensures low reactor pressure drop owing to enhanced bed voidage. In this study, the expressions for the efficient computation of the effectiveness factor are derived for a ring-shaped catalyst pellet undergoing first-order irreversible reaction. The methodology consists of using solutions of one-dimensional problems to remove non-homogeneous boundary conditions. The expressions obtained exhibit significantly faster convergence behavior than those reported in literature. The shape parameters, namely, the height-to-diameter ratio and the inner-to-outer radii ratio, significantly affect the catalyst utilization, such that several-fold improvement in the effectiveness factor is achievable.
Rocznik
Strony
99--105
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • King Saud University, Department of Chemical Engineering, PO Box 800, Riyadh 11421, KSA
  • King Saud University, Department of Chemical Engineering, PO Box 800, Riyadh 11421, KSA
  • King Saud University, Department of Chemical Engineering, PO Box 800, Riyadh 11421, KSA
  • King Saud University, Department of Chemical Engineering, PO Box 800, Riyadh 11421, KSA
Bibliografia
  • 1. Morbidelli, M., Servida, A. & Varma, A. (1982). Optimal catalyst activity profiles in pellets. 1. The case of negligible external mass transfer resistance. Ind. Eng. Chem. Fundam. 21(3), 278–284. DOI: 10.1021/i100007a015.
  • 2. Wu, H., Brunovska, A., Morbidelli, M. & Varma, A. (1990). Optimal catalyst acitivity profiles in pellets—VIII. General nonisothermal reacting systems with arbitrary kinetics. Chem. Eng. Sci. 45(7), 1855–1862. DOI: 10.1016/0009-2509(90)87061-V.
  • 3. Wu, H., Yuan, Q. & Zhu, B. (1990). An experimental study of optimal active catalyst distribution in pellets for maximum selectivity. Ind. Eng. Chem. Res. 29(9), 1771–1776. DOI: 10.1021/ie00105a006.
  • 4. Baratti, R., Gavriilidis, A., Morbidelli, M. & Varma, A. (1994). Optimization of a nonisothermal nonadiabatic fixed-bed reactor using dirac-type silver catalysts for ethylene epoxidation. Chem. Eng. Sci. 49(12), 1925–1936. DOI: 10.1016/0009-2509(94)80077-4.
  • 5. Morbidelli, M., Gavriilidis, A. & Varma, A. (2001). Catalyst design, optimal distribution of catalyst in pellets, reactors, and membranes (1st ed.). Cambridge, U.K.: Cambridge University Press.
  • 6. Hwang, S., Linke, P. & Smith, R. (2004). Heterogeneous catalytic reactor design with optimum temperature profile II: application of non-uniform catalyst. Chem. Eng. Sci. 59(20), 4245–4260. DOI: 10.1016/j.ces.2004.05.036.
  • 7. Wei, J. (2011). Catalyst designs to enhance diffusivity and performance—I: Concepts and analysis. Chem. Eng. Sci. 66 (19), 4382–4388. DOI: 10.1016/j.ces.2011.02.010.
  • 8. Wang, G. & Coppens, M.-O. (2010). Rational design of hierarchically structured porous catalysts for autothermal reforming of methane. Chem. Eng. Sci. 65(7), 2344–2351. DOI: 10.1016/j.ces.2009.09.079.
  • 9. Wang, G., Johannessen, E., Kleijn, C.R., de Leeuw, S.W. & Coppens, M.O. (2007). Optimizing transport in nanostructured catalysts: A computational study. Chem. Eng. Sci. 62(18–20), 5110–5116. DOI: 10.1016/j.ces.2007.01.046.
  • 10. Ying, J.Y. & Martinez, J.G. Mesostructured Zeolitic Materials and Methods of Making and Using the Same, Google Patents, 2009.
  • 11. Asif, M. (2013). Conversion Enhancement of Fixed-Bed Reactors Using Two-Dimensional Hollow Cylindrical Catalyst Pellet. Int. J. Chem. React. Eng. 11(1), 159. DOI: 10.1515/ijcre-2012-0038.
  • 12. Fogler, H.S. (2011). Essentials of Chemical Reaction Engineering (1st ed.). Upper Saddle River, New Jersey: Prentice Hall.
  • 13. http://pxhl.cn/en/pro_bigpic.asp?id=23
  • 14. http://www.dupont.com/products-and-services/consulting-services-process-technologies/brands/sustainable-solutions/sub-brands/clean-technologies/uses-and-applications/mecs-catalyst.html
  • 15. http://www.topsoe.com/products/catalysts
  • 16. http://www.matrostech.com/ccatalysts.html] Asif, M. (2015). Retrofitting of Fixed-Bed Heterogeneous Reactors for Glucose Isomerization. Chem. Eng. Commun. 202 (11), 1547–1556. DOI: 10.1080/00986445.2014.959587.
  • 17. Asif, M. (2015). Retrofitting of Fixed-Bed Heterogeneous Reactors for Glucose Isomerization. Chem. Eng. Commun. 202 (11), 1547–1556. DOI: 10.1080/00986445.2014.959587.
  • 18. Asif, M. (2004). Efficient Expressions for Effectiveness Factor for a Finite Cylinder. Chem. Eng. Res. Des. 82 (5), 605–610. DOI: http://dx.doi.org/10.1205/026387604323142658.
  • 19. Ozisik, M.N. (1980). Heat Conduction (2nd ed.). New York: John Wiley.
  • 20. Wijngaarden, R.J., Kronberg, A. & Westerterp, K.R. (1998). Industrial Catalysis: Optimizing Catalysts and Processes (1st ed. Wiley-VCH Verlag GmbH.
  • 21. Gunn, D.J. (1967). Diffusion and chemical reaction in catalysis and absorption. Chem. Eng. Sci. 22 (11), 1439–1455. DOI: http://dx.doi.org/10.1016/0009-2509(67)80071-X
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dba3506f-45cc-4063-9c7a-e9825fb39f04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.