PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composite materials made from polymer waste and wasted fillers as thermal insulation materials

Identyfikatory
Warianty tytułu
PL
Materiały kompozytowe wykonane z odpadów polimerowych i zużytych wypełniaczy jako materiały termoizolacyjne
Języki publikacji
EN
Abstrakty
EN
This paper describes an experimental study to determine the mechanical properties and thermal conductivity of recycled polymer waste with the addition of recycled fillers. The influence of different preparation methods for the composites (processing by pressing and processing by pressing with extrusion) and the type of additives used (ground Tetra Pak™ cardboard and sawdust) along with their volume fractions (0, 10, 20, and 30%) in the produced materials on their thermal conductivity, impact strength, bending strength, and deflection temperature was analyzed. The results show comparable thermal insulation to materials commonly used in the construction industry as energy-efficient masonry substrates. The material was coherent, had significant bending strength and sufficient impact strength. It was characterized by a low thermal conductivity coefficient of around 0.15 W/(m K). Through their research, the authors have demonstrated the feasibility of various plastic waste materials with used fillers, indicating their potential future use in the construction industry as thermal insulation materials.
Wydawca
Czasopismo
Rocznik
Tom
Strony
93--103
Opis fizyczny
Bibliogr. 48 poz., fig., tab.
Bibliografia
  • [1] Ab Ghani, M.H.; Ahmad, S. The Comparison of Water Absorption Analysis between Counterrotating and Corotating Twin-Screw Extruders with Different Antioxidants Content in Wood Plastic Composites. Advances in Materials Science and Engineering 2011, 2011, 1—4, doi:10.1155/2011/406284.
  • [2] Ahn, G.C.; Jang, S.S.; Lee, KY; Baek, Y.C.; Oh, Y.K.; Park, K.K. Characteristics of Sawdust, Wood Shavings and Their Mixture Hom Different Pine Species as Bedding Materials for Hanwoo Cattle. Asian-Australas J Anim Sci 2020, 33, 856—865, doi:lO.57l3/ajas.l9.0519.
  • [3] Aranda-Garcia, F.].; Gonzalez-Perez, MM.; Robledo-Ortiz, J .R.; Sedano-de la Rosa, C.; Espinoza, K.; Ramirez- Arreola, D.E. Influence of Processing Time on Physical and Mechanical Properties of Composite Boards Made of Recycled Multilayer Containers and HDPE. J Mater Cycles Waste Manag 2020, 22, 2020—2028, doi: 10. 1007/510163-020-01092-5.
  • [4] Avella, M.; Avolio, R.; Bonadies, I.; Carfagna, C.; Errico, ME. _; Gentile, G. Recycled Multilayer Cartons as Cellulose Source in HDPE-based Composites: Compatibilization and Structure-properties Relationships. J Appl Polym Sci 2009, 114, 2978—2985, doi:10.1002/app.30913.
  • [5] Ayrilmis, N.; Kaymakci, A.; Akbulut, T.; Elmas, G.M. Mechanical Performance of Composites Based on Wastes of Polyethylene Aluminum and Lignocellulosics. Compos B Eng 2013, 47, 150—154, doi:10.1016/j.compositesb.2012.10.019.
  • [6] Bal, B.C. Mechanical Properties of Wood-Plastic Composites Produced with Recycled Polyethylene, Used Tetra Pak® Boxes, and Wood Flour. Bioresources 2022, 17, 6569—6577, doi:10.15376/biores.17.4.6569-6577.
  • [7] Bekhta, P.; Lyutyy, P.; Hiziroglu, S.; Ortynska, G. Properties of Composite Panels Made from T etra-Pak and Polyethylene Waste Material. J Polym Environ 2016, 24, 159—165, doi: 10. 1007/510924-016-0758-7.
  • [8] Chanda, M. Chemical Aspects of Polymer Recycling. Advanced Industrial and Engineering Polymer Research 2021, 4, 133—150, doi:10.1016/j.aiepr.202l06.002.
  • [9] Chen, RS.; Salleh, MN.; Ab Ghani, M.H.; Ahmad, S.; Gan, S. Biocomposites Based on Rice Husk Flour and Recycled Polymer Blend: Effects of Interfacial Modification and High Fibre Loading. Bioresources 2015, 10, doi:10.l5376/biores.10.4.6872-6885.
  • [10] Ebadi, M.; Farsi, M.; Narchin, P.; Madhoushi, M. The Effect of Beverage Storage Packets (Tetra PakTM) Waste on Mechanical Properties of Wood—Plastic Composites. Journal of Thermoplastic Composite Materials 2016, 29, 1601—1610, doi:10.1177/0892705715618745.
  • [12] Georgiopoulou, I.; Pappa, GD.; Vouyiouka, SN.; Magoulas, K. Recycling of Post-Consumer Multilayer Tetra Pak® Packaging with the Selective Dissolution-Precipitation Process. Resour Conserv Recycl 2021, 165, 105268, doi:10.1016/j.resconrec.2020.105268.
  • [13] Guillén-Mallette, J.; Carrillo-Baeza, J.; Aranda-Ayala, A.; Rivero-Ayala, M. Optimization of Processability and Physical and Mechanical Properties of Extruded Polyethylene- Tetra Pak Cartons Composites by Experimental Design. Journal of Thermoplastic Composite Materials 2021, 34, 1462—1487, doi:10.l177/0892705719873944.
  • [14] Hamel, S.E.; Hermanson, J .C.; Cramer, S.M. Mechanical and Time-Dependent Behavior of Wood—Plastic Composites Subjected to Bending. Journal of Thermoplastic Composite Materials 2015, 28, 630—642, doi:10.l177/0892705713486140.
  • [15] Haque, S.M.; Ardila-Rey, JA.; Umar, Y.; Mas’ud, AA.; Muhammad-Sukki, F.; Jume, B.H.; Rahman, H.; Bani, NA. Application and Suitability of Polymeric Materials as Insulators in Electrical Equipment. Energies (Basel) 2021, 14, 2758, doi:10.3390/enl4102758.
  • [16] Idrus, M.A.M.M. ; Hamdan, S.; Rahman, Md.R.; Islam, Md.S. Treated Tropical Wood Sawdust-Polypropylene Polymer Composite: Mechanical and Morphological Study. J Biomater Nanobiotechnol 2011, 02, 435—444, doi:10.4236/jbnb2011.24053.
  • [17] Jiang, J.; Shi, K.; Zhang, X.; Yu, K.; Zhang, H.; He, J.; Ju, Y.; Liu, J. From Plastic Waste to Wealth Using Chemical Recycling: A Review. J Environ Chem Eng 2022, 10, 106867, doi:10.1016/j.jece.2021.106867.
  • [18] Joyace Koranteng Developing Composites fiom Waste Plastic and Sawdust. MPhil, Materials Engineering, Kwame Nkrumah University of Science and Technology, 2015.
  • [19] Kaymakci, A.; Ayrilmis, N.; Akbulut, T. Determination of Mechanical Behaviour of Wood Polymer Composites Manufactured Using Waste Aluminium Polyethylene. Journal of History Culture and Art Research 2012.
  • [20] Kim, J.-P.; Yoon, T.-H.; Mun, S.-P.; Rhee, J. -M.; Lee, J .-S. Wood—Polyethylene Composites Using Ethylene—Vinyl Alcohol Copolymer as Adhesion Promoter. Bioresour Technol 2006, 97, 494—499, doi:10.1016/j.biortech.2005.02.048.
  • [21] Kiran MC; Varada Raju KC; SujathaD; Mamatha BS; Uday D N; Prakash V Recycling Of Beverages Tetra Pack Wastes into Value Added Composites. IJISET - International Journal of Innovative Science, Engineering & Technology 2021, 8.
  • [22] Lambda Values - Thermal Conductivity of Building Materials.
  • [23] Lee, A.; Liew, M.S. Tertiary Recycling of Plastics Waste: An Analysis of Feedstock, Chemical and Biological Degradation Methods. J Mater Cycles Waste Manag 2021, 23, 32—43, doi:10.1007/510163-020-01106-2.
  • [24] Lopes, C.M.A.; Felisberti, MJ. Composite of Low—density Polyethylene and Aluminum Obtained from the Recycling of Postconsurner Aseptic Packaging. J Appl Polym Sci 2006, 101, 3183—3191, doi:10.1002/app.23406.
  • [25] Lu, J Z.,; Wu, Q,; McNabb, HS. Chemical Coupling in Wood Fiber and Polymer Composites: A Review of Coupling Agents and Treatment. Wood and Fiber Science 2000, 32 (1), 88—104.
  • [26] Macias Gallego, S.; Guzman Aponte, A.; Buitrago Sierra, R.; Santa Marin, J.F. Evaluation of Mechanical Properties of Composites Manufactured from Recycled Tetra Pak® Containers. Tecnura. 2020, 24, 36—46, doi:10.14483/22487638.16296.
  • [27] Malinowski, R.; Meller, E.; Ochmian, I.; Malinowska, K.; Figiel-Kroczyńska, M. Chemical Composition of Industrial Wood Waste and the Possibility of Its Management. Civil and Environmental Engineering Reports 2022, 32, 167—183, doi:10.2478/ceer-2022-0051.
  • [28] Martínez-Barrera, G.; De la Colina-Martínez, A.L.; Martínez-López, M.; del Coz-Díaz, J.J.; Gencel, O.; Ávila-Córdoba, L.; Barrera-Díaz, C.E.; Varela-Guerrero, V.; Martínez-López, A. Recovery and Reuse of Waste Tetra PakPackages by Using a Novel Treatment. In Trends in Beverage Packaging; Elsevier, 2019; pp. 303–341
  • [29] Martinez-Barrera, G.; del Coz-Diaz, J.J.; Alonso-Martinez, M.; Martinez-López, M. Lamellae of Waste Beverage Packaging (Tetra Pak) and Gamma Radiation as Tools for Improvement of Concrete. Case Studies in Construction Materials 2020, 12, e00315, doi:10.1016/j.cscm.2019.e00315.
  • [30] Menington, A. Recycling of Plastics. In Applied Plastics Engineering Handbook; Elsevier, 2024; pp. 191—217.
  • [31] Mohan, H.T.; Jayanarayanan, K; Mini, KM. Recent Trends in Utilization of Plastics Waste Composites as Construction Materials. Constr Build Mater 2021, 271, 121520, doi:10.1016/j.conbuildmat.2020.121520.
  • [32] Munoz Guzman, A.D.; Trotta Munno, MG. Design of a Brick With Sound Absorption Properties Based on Plastic Waste & Sawdust. IEEE Access 2015, 3, 1260—1271, doi:10.l109/ACCESS.2015.2461536.
  • [33] Nassef, MG.; El-Galy, I.; Hassanin, A. Mechanical and Dynamic Characterization of Sustainable Composites Based on Food Packaging Waste. MAT EC Web of Conferences 2018, 249, 01002, doi: 10.105l/matecconf/201824901002.
  • [34] Ncube, L.K.; Ude, AU.; Ogunmuyiwa, EN.; Zulkifli, R.; Beas, IN. An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling 2021, 6, 12, doi:10.3390/recycling6010012.
  • [35] Norma Europej ska EN ISO 6946:2007 ma status Polskiej Normy PN-EN ISO 6946:2008 ~ Komponenty Budowlane i Elementy Budynku Opór Cieplny i Współczynnik Przenikania Ciepła Metoda Obliczania. 2008.
  • [36] Plastics — the Fast Facts 2023 - Plastics Europe. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts- 2023/ 2023.
  • [37] PN-EN ISO 10456: 2009 - Materiały i Wyroby Budowlane —— Tabele Wartości Projektowych, Określanie Deklarowanych i Projektowych Wartości Cieplnych. 2009.
  • [38] Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and Chemical Recycling of Solid Plastic Waste Waste Management 2017, 69, 24—58, doi:10 1016/j.wasman. 2017.07.044
  • [39] Rahman, N.M.; Akresh, S.A. Profiling Pressure-Derivative Values- A NeW, Innovative Way to Estimate the Radii of Investigation in Heterogeneous Reservoir Systems. In Proceedings of the All Days; SPE, March 10 2013.
  • [40] Rajak, D.; Pagar, D.; Menezes, P.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers (Basel) 2019, 11, 1667, doi:10.3390/polym11101667.
  • [41] Rezaur Rahman, Md; Hasan, M.; Monimul Huque, Md; Nazrul Islam, Md. Physico-Mechanical Properties of Jute Fiber Reinforced Polypropylene Composites. Journal of Reinforced Plastics and Composites 2010, 29, 445—455, doi: 10. 1177/0731684408098008.
  • [42] Rezaur Rahman, Md; Nazrul Islam, Md; Monimul Huque, Md. Influence of Fiber Treatment on the Mechanical and Morphological Properties of Sawdust Reinforced Polypropylene Composites. J Polym Environ 2010,18,443—450, doi:10.1007/s10924-010-0230-z.
  • [43] Samir, A.; Ashour, FH. ; Hakim, A.A.A.; Bassyouni, M. Recent Advances in Biodegradable Polymers for Sustainable Applications. i Mater Degrad 2022, 6, 68, doi: 10.1038/341529-022-00277 -7.
  • [44] Sanchez-Cadena, LE.; Alvarado-Tenorio, B.; Romo-Uribe, A.; Campillo, B.; Flores, O.; Yao, H. Hot-Pressed Boards Based on Recycled High-Density Polyethylene Tetrapack: Mechanical Properties and Fracture Behavior. Journal of Reinforced Plastics and Composites 2013, 32, 1779—1792, doi:10.1177/0731684413493340.
  • [45] Singh, M.K.; Arora, G.; Tewari, R; Zafar, S.; Pathak, H.; Sehgal, A.K. Effect of Pine Cone Filler Particle Size and Treatment on the Performance of Recycled Thermoplastics Reinforced Wood Composites. Mater Today Proc 2022, 62, 7358—7363, doi:10.1016/j.matpr.2022.02.022.
  • [46] Sormunen, P.; Deviatkin, I.; Horttanainen, M.; Karki, T. An Evaluation of Thermoplastic Composite Fillers Derived from Construction and Demolition Waste Based on Their Economic and Environmental Characteristics. J Clean Prod 2021, 280, 125198, doi:lO.1016/j.jclepro.2020.125198.
  • [47] Yilgor, N.; Kose, C.; Terzi, E. ; Figen, AK.; Ibach, R.; Kartal, SN.; Piskin, S. Degradation Behavior and Accelerated Weathering of Composite Boards Produced from Waste Tetra Pak® Packaging Materials. Bioresources 2014, 9, doi:10.l5376/biores.9.3.4784-4807.
  • [48] Zhou, X.; Yu, Y.; Lin, Q.; Chen, L. Effects of Maleic Anhydride-Grafted Polypropylene (MAPP) on the Physico-Mechanical Properties and Rheological Behavior of Bamboo Powder-Polypropylene Foamed Composites. Bioresources 2013, 8, doi:10.15376/biores.8.4.6263-6279.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dba0d2da-f7c4-48ee-975e-8c836a1c5a0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.