PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Targeted Cellular Tracking of Pancreatic Cancer Cells via Magnetic Particle Spectroscopy (MPS)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective: Pancreatic cancer is an asymptomatic disease and, based on statistical studies, it is the fourth leading cause of cancer-related death. Pancreatic ductal adenocarcinoma (PDAC), which accounts for over 95% of pancreatic cancers, is typically detectable at advanced stages. Standard diagnostic methods include bloodbased tests and imaging. Standard diagnostic methods include blood-based tests and imaging. Biomarkers play a key role as indicators in blood tests, offering valuable insights into disease detection and monitoring. Mesothelin, a cell-surface glycoprotein, and vimentin, an intermediate filament protein, are promising biomarker candidates. Methods: In this study, these biomarkers were conjugated with magnetic nanoparticles (MNPs) and utilized for cellular tracking through magnetic particle spectroscopy (MPS). Capan-1 (a pancreatic cancer cell line) and bone marrow stem cells (BMSC) were treated with the targeted MNPs. Subsequently, MNP-labelled cells were evaluated with imaging modalities such as MPS and confocal microscopy. Results: In the case of the MPS modality, a home-made MPS device with a detection limit of 1 ng of MNPs was used. The results showed that MPS can quantitatively trace MNPs signals and differentiate between various treatments. Conclusions: Detection of labelled cells via MPS is a novel method with features such as sensitivity, non-invasiveness, and no background noise. This new technology can pave the way for imaging quantification of pancreatic cancer in its primary stages and for tracking cancer cell populations. populations.
Rocznik
Strony
63--70
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
  • School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
  • School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
autor
  • School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
autor
  • National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
autor
  • National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
autor
  • School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
Bibliografia
  • 1. McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018;24(43):4846.
  • 2. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395(10242):2008-20.
  • 3. Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021;326(9):851-62.
  • 4. Kaur S, Baine MJ, Jain M, Sasson AR, Batra SK. Early diagnosis of pancreatic cancer: challenges and new developments. Biomark Med. 2012;6(5):597-612.
  • 5. Sehl OC, Foster PJ. The sensitivity of magnetic particle imaging and fluorine-19 magnetic resonance imaging for cell tracking. Sci Rep. 2021;11(1):22198.
  • 6. Zervos E, Agle S, Freistaedter AG, Jones GJ, Roper RL. Murine mesothelin: characterization, expression, and inhibition of tumor growth in a murine model of pancreatic cancer. J. Exp. Clin. Cancer Res. 2016;35:1-13.
  • 7. Green KJ, Böhringer M, Gocken T, Jones JC. Intermediate filament associated proteins. Adv. Protein Chem. 2005;70:143-202.
  • 8. Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, et al. Magnetic particle imaging: An emerging modality with prospects in diagnosis, targeting and therapy of cancer. Cancers. 2021;13(21):5285.
  • 9. Malhotra N, Lee J-S, Liman RAD, Ruallo JMS, Villaflores OB, Ger T-R, et al. Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules. 2020;25(14):3159.
  • 10. Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, et al. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine. 2014:2479-88.
  • 11. Soenen SJ, Rivera-Gil P, Montenegro J-M, Parak WJ, De Smedt SC, Braeckmans K. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today. 2011;6(5):446-65.
  • 12. Kim D-K, Zhang Y, Voit W, Rao K, Kehr J, Bjelke B, et al. Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scr. Mater. 2001;44(8-9):1713-7.
  • 13. Huntosova V, Andreana M, Unterhuber A. Advanced imaging and its application in biology and medicine. Front Cell Dev Biol. 2023 Mar 8;11:1163210.
  • 14. Kastelik-Hryniewiecka A, Jewula P, Bakalorz K, Kramer-Marek G, Kuźnik N. Targeted PET/MRI imaging super probes: a critical review of opportunities and challenges. Int J Nanomedicine. 2022 Jan 1:16:8465-8483.
  • 15. Fekri Aval S, Akbarzadeh A, Yamchi MR, Zarghami F, Nejati-Koshki K, Zarghami N. Gene silencing effect of SiRNA-magnetic modified with biodegradable copolymer nanoparticles on hTERT gene expression in lung cancer cell line. Artif Cells Nanomed Biotechnol. 2016;44(1):188-93.
  • 16. Wang X, Lin KS, Chan JC, Cheng S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B 2005;109(5):1763-9.
  • 17. Chafidz A, Astuti W, Augustia V, Novira DT, Rofiah N. Removal of methyl violet dye via adsorption using activated carbon prepared from Randu sawdust (Ceiba pentandra). Bristol: IOP Conference Series: Earth and Environmental Science; IOP Publishing; 2018.
  • 18. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop. J. Pharm. Res. 2013;12(2):255-64.
  • 19. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop. J. Pharm. Res. 2013;12(2):265-73.
  • 20. Bhattacharjee S. DLS and zeta potential-what they are and what they are not? J. Control. Release. 2016;235:337-51.
  • 21. Arami H, Khandhar AP, Tomitaka A, Yu E, Goodwill PW, Conolly SM, et al. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials. 2015;52:251-61.
  • 22. Stiufiuc GF, Stiufiuc RI. Magnetic Nanoparticles: Synthesis, Characterization, and Their Use in Biomedical Field. Appl. Sci. 2024;14(4):1623.
  • 23. Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science. 2003;300(5616):82-6.
  • 24. Foy SP, Manthe RL, Foy ST, Dimitrijevic S, Krishnamurthy N, Labhasetwar V. Optical imaging and magnetic field targeting of magnetic nanoparticles in tumors. ACS Nano. 2010;4(9):5217-24.
  • 25. Sehl OC, Gevaert JJ, Melo KP, Knier NN, Foster PJ. A perspective on cell tracking with magnetic particle imaging. Tomography. 2020;6(4):315-24.
  • 26. Zhang W, Liang X, Zhu L, Zhang X, Jin Z, Du Y, et al. Optical magnetic multimodality imaging of plectin-1-targeted imaging agent for the precise detection of orthotopic pancreatic ductal adenocarcinoma in mice. EBioMedicine. 2022;80:104040.
  • 27. Tremblay M-L, O’Brien-Moran Z, Rioux JA, Nuschke A, Davis C, Kast WM, et al. Quantitative MRI cell tracking of immune cell recruitment to tumors and draining lymph nodes in response to anti-PD-1 and a DPX-based immunotherapy. Oncoimmunology. 2020;9(1):1851539.
  • 28. Lazaro-Carrillo A, Filice M, Guillén MJ, Amaro R, Viñambres M, Tabero A, et al. Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers. Mater Sci Eng C Mater Biol Appl. 2020;107:110262.
  • 29. Weekes CD, Lamberts LE, Borad MJ, Voortman J, McWilliams RR, Diamond JR, et al. Phase I study of DMOT4039A, an antibody-drug conjugate targeting mesothelin, in patients with unresectable pancreatic or platinum-resistant ovarian cancer. Mol. Cancer Ther. 2016;15(3):439-47.
  • 30. Hassan R, Thomas A, Alewine C, Le DT, Jaffee EM, Pastan I. Mesothelin immunotherapy for cancer: ready for prime time? J. Clin. Oncol. 2016;34(34):4171-9.
  • 31. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 2018;13(1):395-412.
  • 32. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song G. Mesenchymal stem cell migration and tissue repair. Cells. 2019;8(8):784.
  • 33. Bergers G, Fendt S-M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer. 2021;21(3):162-80.
  • 34. Sneeggen M, Guadagno NA, Progida C. Intracellular transport in cancer metabolic reprogramming. Front Cell Dev Biol. 2020;8:597608.
  • 35. Samanta K, Setua S, Kumari S, Jaggi M, Yallapu MM, Chauhan SC. Gemcitabine combination nano therapies for pancreatic cancer. Pharmaceutics. 2019;11(11):574.
  • 36. Chen Y, Hou S. Recent progress in the effect of magnetic iron oxide nanoparticles on cells and extracellular vesicles. Cell Death Discov. 2023;9(1):195.
  • 37. Sakhtianchi R, Minchin RF, Lee K-B, Alkilany AM, Serpooshan V, Mahmoudi M. Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv. Colloid Interface Sci. 2013;201:18-29.
  • 38. Meyer RA, Green JJ. Biodegradable polymer iron oxide nanocomposites: the future of biocompatible magnetism. Nanomedicine (Lond). 2015;10(23):3421-5.
  • 39. Bulte JW, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis BK, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 2001;19(12):1141-7.
  • 40. Ren R, Tan X-H, Zhao J-H, Zhang Q-P, Zhang X-F, Ma Z-J, et al. Bone marrow mesenchymal stem cell-derived exosome uptake and retrograde transport can occur at peripheral nerve endings. Artif Cells Nanomed Biotechnol. 2019;47(1):2918-29.
  • 41. Popescu R, Savu D, Dorobantu I, Vasile B, Hosser H, Boldeiu A, et al. Efficient uptake and retention of iron oxide-based nanoparticles in HeLa cells leads to an effective intracellular delivery of doxorubicin. Sci. Rep. 2020;10(1):10530.
  • 42. Le T-A, Hadadian Y, Yoon J. A prediction model for magnetic particle imaging–based magnetic hyperthermia applied to a brain tumor model. Comput. Methods Programs Biomed. Update. 2023;235:107546.
  • 43. Wei T, Zhang X, Zhang Q, Yang J, Chen Q, Wang J, et al. Vimentin-positive circulating tumor cells as a biomarker for diagnosis and treatment monitoring in patients with pancreatic cancer. Cancer Lett. 2019;452:237-43.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db9fcfa6-82ef-4049-8113-fcb5081f1336
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.