Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the current research, waste from woollen yarn production was analysed. Woollen yarn waste as raw material was used for the production of soft thermal insulation mats. Two types of mats were produced in a textile plant: thermally untreated and thermally treated. Properties such as the fibre composition, structure, and thermal conductivity of the thermally untreated and thermally treated mats were studied. During the composition analysis of the woollen yarn waste, the quantity of long, medium length, and short fibres was determined. The content of fats, salts, and other organic and synthetic impurities was investigated. The micro and macrostructures and contact zones between the fibres and the binding material were analysed. The dependences of the thermal conductivity on the density of the thermally untreated and thermally treated composites were obtained.
Czasopismo
Rocznik
Tom
Strony
8--16
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Building Materials Institute, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
autor
- Building Materials Institute, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
autor
- Department of Textile Technologies, Centre for Physical Sciences and Technology, Kaunas, Lithuania
autor
- Building Materials Institute, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
autor
- Building Materials Institute, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
Bibliografia
- 1. DeVoy JE, Congiusta E, Lundberg DJ, Findeisen S, Bhattacharya S (2021) Post-Consumer textile waste and disposal: Differences by socioeconomic, demographic, and retail factors. Waste Manage 136: 303-309. https://doi.org/10.1016/j.wasman.2021.10.009
- 2. Horvat KP, Wendramin KŠ (2021) Issues Surrounding Behavior toward Discarded Textiles and Garments in Ljubljana. Sustainability 13(11):6491. https://doi.org/10.3390/su13116491
- 3. Jäämaa L, Kaipia R (2022) The first mile problem in the circular economy supply chains – Collecting recyclable textiles from consumers. Waste Manage 141:173-182. https://doi.org/10.1016/j.wasman.2022.01.012
- 4. U.S. EPA (2018) Textiles: Material-Specific Data. https://www.epa.gov/factsand-figures-about-materials-waste-andrecycling/textiles-material-specific-data Accessed 10 January 2022.
- 5. Wang Y (2010) Fibers and Textile Waste Utilization. Waste Biomass Valori 1:135–143. https://doi.org/10.1007/s12649-009-9005-y
- 6. Zhao Y, Chen W, Liu F, Zhao P (2022) Hydrothermal pretreatment of cotton textile wastes: Biofuel characteristics and biochar electrocatalytic performance. Fuel 316:123327. https://doi.org/10.1016/j.fuel.2022.123327
- 7. Sadrolodabaee P, Claramunt J, Ardanuy M, de la Fuenteal A (2021) Mechanical and durability characterization of a new textile waste micro-fiber reinforced cement composite for building applications. Case Stud Constr Mater 14:e00492. https://doi.org/10.1016/j.cscm.2021.e00492
- 8. Dissanayake DGK, Weerasinghe DU, Wijesinghe KAP, Kalpage KMDMP (2018) Developing a compression moulded thermal insulation panel using postindustrial textile waste. Waste Manage 79:356-361. https://doi.org/10.1016/j.wasman.2018.08.001
- 9. Jamshaid H, Hussain U, Mishra R, Tichy M, Muller M (2021) Turning textile waste into valuable yarn. Clean Eng Technol 5: 100341. https://doi.org/10.1016/j.clet.2021.100341
- 10. Lopatina A, Anugwom I, Blot H, Conde ÁS, Mänttäri M, Kallioinen M (2021) Re-use of waste cotton textile as an ultrafiltration membrane. J Environ Chem Eng 9(4): 105705. https://doi.org/10.1016/j.jece.2021.105705
- 11. Rahman SS, Siddiqua S, Cherian C (2022) Sustainable applications of textile waste fiber in the construction and geotechnical industries: A retrospect. Clean Eng Technol 6:100420. https://doi.org/10.1016/j.clet.2022.100420
- 12. Zoccola M, Montarsolo A, Mossotti R, Patrucco A, Tonin C (2015). Green Hydrolysis as an Emerging Technology to Turn Wool Waste into Organic Nitrogen Fertilizer. Waste Biomass Valori 6:891–897. https://doi.org/10.1007/s12649-015-9393-0
- 13. Boussine S, Ouakarrouch M, Bybi A, Laaroussi N, Garoum M, Tilioua A (2022) Acoustical and thermal characterization of sustainable materials derived from vegetable, agricultural, and animal fibers. Appl Acoust 187: 108520. https://doi.org/10.1016/j.apacoust.2021.108520
- 14. Fiore V, Di Bella G, Valenza A (2020) Effect of Sheep Wool Fibers on Thermal Insulation and Mechanical Properties of Cement-Based Composites. J Nat Fibers 17(10):1532-1543. https://doi.org/10.1080/15440478.2019.1584075
- 15. Denes O, Florea I, Manea DL (2019) Utilization of Sheep Wool as a Building Material. Procedia Manuf 32: 236-241. https://doi.org/10.1016/j.promfg.2019.02.208
- 16. Kamble Z, Behera BK (2021) Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr Build Mater 284:122800. https://doi.org/10.1016/j.conbuildmat.2021.122800
- 17. Valverde IC, Castilla LH, Nuñez DF, Rodriguez-Senín E, de la Mano Ferreira R (2013) Development of New Insulation Panels Based on Textile Recycled Fibers. Waste Biomass Valori 4:139–146. https://doi.org/10.1007/s12649-012-9124-8
- 18. Patnaik A, Mvubu M, Muniyasamy S, Botha A, Anandjiwala RD (2015) Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy Build 92:161-169. https://doi.org/10.1016/j.enbuild.2015.01.056
- 19. Ghermezgoli ZM, Moezzi M, Yekrang J, Rafat SA, Soltani P, Barez F (2021) Sound absorption and thermal insulation characteristics of fabrics made of pure and crossbred sheep waste wool. J Build Engin 35:102060. https://doi.org/10.1016/j.jobe.2020.102060
- 20. Akter MMdK, Haq UN, Islamb MdM, Uddin MA (2022) Textile-apparel manufacturing and material waste management in the circular economy: A conceptual model to achieve sustainable development goal (SDG) 12 for Bangladesh. Clean Environ Syst 4:100070. https://doi.org/10.1016/j.cesys.2022.100070
- 21. Stapulionienė R (2016) Development and investigation of thermal insulating composite from fibrous plants [Termoizoliacinio kompozito iš pluoštinių augalų kūrimas ir tyrimai]. PhD Dissertation. Vilnius: Technika
- 22. Stapulionienė R, Vaitkus S, Vėjelis S, Sankauskaitė A (2016) Investigation of thermal conductivity of natural fibres processed by different mechanical methods. Int J Precis Eng Man 17:1371–1381. https://doi.org/10.1007/s12541-016-0163-0
- 23. ISO 1833-1:2006. Textiles — Quantitative chemical analysis — Part 1: General principles of testing. ISO
- 24. ISO 1833-4:2017. Textiles — Quantitative chemical analysis — Part 4: Mixtures of certain protein fibres with certain other fibres (method using hypochlorite). ISO
- 25. ISO 1833-7:2017. Textiles — Quantitative chemical analysis — Part 7: Mixtures of polyamide with certain other fibres (method using formic acid). ISO
- 26. ISO 1833-11:2017. Textiles — Quantitative chemical analysis — Part 11: Mixtures of certain cellulose fibres with certain other fibres (method using sulfuric acid). ISO
- 27. EN 12667:2001. Thermal performance of building materials and products, Determination of thermal resistance by means of guarded hot plate and heat flow meter methods, Products of high and medium thermal resistance. CEN
- 28. ISO 8301:1991. Thermal insulation, Determination of steady-state thermal resistance and related properties, Heat flow meter aparatus. CEN
- 29. Data Science Textbook (2020). https://docs.tibco.com/data-science/textbook. Accessed 19 January 2021
- 30. Chatterjee S, Simonoff SJ (2013) Handbook of Regression Analysis. John Wiley & Sons, Inc., Hoboken, New Jersey
- 31. Zach, J., Korjenic, A., Petranek, V., Hroudova, J., Bednar, T.. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Build. (2012). https://doi.org/10.1016/j.enbuild.2012.02.014
- 32. Ye, Z., Wells, C.M., Carrington, C.G., Hewitt, N.J. Thermal conductivity of wool and wool–hemp insulation. International J. Energy Res. (2006). https://doi.org/10.1002/er.1123
- 33. Zach J, Hroudova J, Brožovsky J, Krejza Z, Gailius A (2013) Development of Thermal Insulating Materials on Natural Base for Thermal Insulation Systems. Procedia Eng 57:1288-1294. https://doi.org/10.1016/j.proeng.2013.04.162
- 34. Dieckmann E, Onsiong R, Nagy B, Sheldrick L, Cheeseman C (2021) Valorization of Waste Feathers in the Production of New Thermal Insulation Materials. Waste Biomass Valori 12:1119–1131. https://doi.org/10.1007/s12649-020-01007-3
- 35. Asdrubali F, D‘Alessandro F, Schiavoni SA (2015) Review of unconventional sustainable building insulation materials. Sustainable Mat Technol 4:1-17. https://doi.org/10.1016/j.susmat.2015.05.002
- 36. Bosia D, Savio L, Thiebat F, Patrucco A, Fantucci S, Piccablotto G, Marino D (2015) Sheep Wool for Sustainable Architecture. Energ Proc 78: 315-320. https://doi.org/10.1016/j.egypro.2015.11.650
- 37. Plowman JE, Harland DP, Scobie DR, O’Connell D, Thomas A, Brorens PH, Richena M, Meenken E, Phillips AJ, Vernon J A, Clerens S (2019) Differences between ultrastructure and protein composition in straight hair fibres. Zoology 133: 40-53. https://doi.org/10.1016/j.zool.2019.01.002
- 38. Kancheva M, Toncheva A, Manolova N, Rashkov I (2015) Enhancing the Mechanical Properties of Electrospun Polyester Mats by Heat Treatment. EXPRESS Polym Lett 9(1):49–65. http://dx-.doi.org/10.3144/expresspolymlett.2015.6
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db9e3e75-5117-46fa-99f0-b7789da50b89