PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

UV Degradation Influence on the Selected Physical Properties of Extruded PVC/Ceramic Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a study of PVC-ceramic composites obtained by twin-screw extrusion. Properties such as colour, wettability, tensile strength, elongation at break and impact tensile strength were studied. Moreover, the composite samples were subjected to UV degradation process and the influence of the composite composition therefore the degradation process on the mentioned properties has been determined. The study showed the dependence of the ceramic content in the material and its granulation on the individual properties. The research showed a significant influence of degradation on the colour and wettability of samples containing ceramic filler with granulation 0.25-0.5 mm, and in the case of tests of mechanical properties, this influence is the greatest for samples with filler with grain size 0.5-1.25 mm. Additionally, the aging process significantly influenced obtained results.
Słowa kluczowe
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Technology and Polymer Processing, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Technology and Polymer Processing, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Alizadeh-Osgouei M., Li Y., Wen C.: A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical application. Bioactive Materials, 2019, (4) 22–36.
  • 2. Al-khazraji K.K., Asim Hanna W., Abdul- Aziz R.A. Preparation and characterization of polymercceramic composite bio-materials . Engineering & Technology Journal, (28 ) 2010.
  • 3. Batapanda T., Senthil V., Anwar S., Cavalcante L.S., Batista N.C., Longo E.: Structural and dielectric properties of polyvinyl alcohol/barium zirconium titanate polymer-ceramic composite. Current Applied Physics, (13), 2013,1490–1495.
  • 4. Cai Z., Wang X., Luo B., Hong W., Wu L., Li L.: Dielectric response and breakdown behavior of polymer- ceramic nanocomposites: The effect of nanoparticle distribution. Composites Science and Technology, (145), 2017,105–113.
  • 5. Cekic-Nagas I., Ergun G., Egilmez F., Vallittu P., Lassila L.: Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials. Journal of Prosthodontic Research, (60), 2016,265–273.
  • 6. Celebi H.: Thermal conductivity and tensile properties of hollow glass microsphere/polypropylene composites. Anadolu University Journal of Science and Technology A-Applied Science and Engineering, (18), 2017,746–753.
  • 7. Dachowski R., Kostrzewa P.: The Use of Waste Materials in the Construction Industry. Procedia Engineering, (161), 2016, 754–758.
  • 8. Deogonda P., Chalwa V.N.: Mechanical properties of glass fiber reinforcement epoxy composites. International Journal of Scientific Engineering and Research, 1,(4) 2013.
  • 9. Diel S., Huber O.: A continuum damage mechanics model for the static and cyclic fatigue of cellular composites. Materials, (10), 2017 951–972.
  • 10. El-Wezyr M.S., El-Elamy M.I., Zoalfakar S.H.: Mechanical properties of glass fiber reinforced polyester composites. Journal of Applied Science and Engineering, (14), 2017,121–131.
  • 11. Garcia C., Trendafilova I., Zucchelli A.: The effect of polycaprolactone nanofibers on the dynamic and impact behavior of glass fibre reinforced polymer composites. Journal of Composites Science, (2) 43, 2018.
  • 12. Grabowska B., Kaczmarska K., Bobrowski A., Drożyński D., Żymankowska – Kumon S., Cukrowicz S.: Polymer binder BioCo3 with silicates and its application to microwave – cured moulding sand. Archives of Foundry Engineering, (17), 2017, 51–60.
  • 13. Guruprasad Alva., Yaxue L., Guiyin F.: Thermal and electrical characterization of polymer/ceramic composites with polyvinyl butyral matrix. Materials Chemistry and Physics, (205), 2018, 401–414.
  • 14. Hameed, S. P. Thomas, R. Abraham, S. Thomas.: Morphology and contact angle studies of poly(styrene-co-acrylonitrile) modified epoxy resin blends and their glass fibre reinforced composites. Express Polymer Letters, (6 ), 2007, 345–355.
  • 15. Hang, T.T.X., Dung, N.T., Truc, T.A., Duong, B.V., Truoc, P.G., Vu, T., Hoang, T., Thanh D.T.M.: Effect of silane modified ZnO on UV degradation of polyurethane coating. Progress in Organic Coating, (79), 2016, 68–74.
  • 16. Hemanth R., Sekar., Suresha B.: Effect of fibers and fillers on mechanical properties of thermoplastic composites. Chemical Science, (2), 2014, 28–35.
  • 17. Heude- François, A., Richaud, E., Desnoux, E., Colin, X.: Influence of temperature, UV-light wavelength and intensity on polypropylene photothermal oxidation. Polymer Degradation and Stability, (100), 2014, 10–20.
  • 18. Hyung-Joon Cho and Dongwoon Jung.: Syntheses and Characterizations of Polymer-Ceramic Composites Having Increased Hydrophilicity, Air-Permeability and Anti-Fungal Property. Journal of the Korean Chemical Society, (54), 2010.
  • 19. Jagannatha T.D., Harish G.: Mechanical properties of carbon/glass fibers reinforced epoxy hybrid polymer composites. International Journal of Mechanical Engineering and Robotics Research, 4 (2015).
  • 20. Klepka, T.: Characteristic of surface condition of special slip layers created in extrusion process. Polimery, 49(2), 2004, 123–127.
  • 21. Klepka, T.: Effectiveness of forming of polymeric special sliding layers. Polimery, 47(9), 2002, 649–653.
  • 22. Klepka, T., Goliszek, M., Podkościelna, B., Sevastyanova, O.: Preparation, Thermal, and Mechanical Characterization of UV-Cured Polymer Biocomposites with Lignin. Polymers, 12(5), 2020.
  • 23. Klepka, T., Garbacz, Ł., Miękoś, E., Zieliński, M., Sroczyński, D.: Effect of batched water exposed to a constant magnetic field on the properties of concrete filled with waste fly ash, phosphogypsum and starch. Polimery, 67(2), 2022, 53–60.
  • 24. Lee J-H., Kim H-W., Seo S-J.: Polymer- ceramic bionanacomposites for dental application. Journal of Nanomaterials, (2016).
  • 25. Li, Z., Yang, G., Xie, L.:Research on fiber reinforced ultra-lightweight concrete applying Poraver aggregates and PVC fiber. Advanced Engineering and Technology, (9), 2016, 95–104.
  • 26. Liu G., Wei W., Jin W., Xu N.: Polymer/ceramic composites membranes and their application in pervaporation process. Chinese Journal of Chemical Engineering, (20), 2012, 62–70
  • 27. Lu, T., Solis-Ramos, E., Yi, Y., Kumosa, M.: Particle removal mechanisms in synergistic aging of polymers and glass reinforced polymer composites under combined UV and water. Composites Science and Technology, 153(1), 2017, 273–28.
  • 28. Lu, T., Solis-Ramos, E., Yi, Y., Kumosa, M.: Synergistic environmental degradation of glass reinforced polymer composites. Polymer Degradation and Stability, (131), 2016, 1–8.
  • 29. Lu, T., Solis-Ramos, E., Yi, Y., Kumosa, M.: UV degradation model for polymers and polymer matrix composites. Polymer Degradation and Stability, 154(4), 2018, 203–210.
  • 30. Makki, H., Adema, K.N.S., Peters, E.A.J.F., Laven, G., van der Ven, L.G.J., van Bethem, R.A.T.M., A simulation approach to study photo-degradation process of polymeric coating. Polymer Degradation and Stability, (105), 2014, 68–79.
  • 31. Mouzakis, D.E., Zoga, H., Galiotis, C.: Accelerated environmental ageing study of polyester/glass fiber reinforced composites (GFRPCs). Composites Part B: Engineering, 39 (3), 2008, 467–475.
  • 32. Ou Y., Zhu D., Zhang H., Huang L., Yao Y., Li G., Mobasher B.: Mechanical Characterization of the tensile properties of glass fiber and its reinforced polymer (GFRP) composites under varying strain rates and temperature. Polymers, (8), 2016, 196 -212.
  • 33. Pieniak D., Niewczas A.M., Kordos P.: Influence of thermal fatique and ageing on the microhardness of polymer – ceramic composites for biomedical applications. Maintenace and Reliability, (14), 2012, 181–188.
  • 34. Pratap A., Singh Y.P.: Dielectric behavior of CaCu3Ti4O12: Poly Vinyl Chloride ceramic polymer composites at different temperature and frequencies. Modern Electronic Materials, (2), 2016, 121–126.
  • 35. Sanfelix G.S., Santacruz I., Szczotok A.M., Belloc L.M., De la Torre A.G., Kjoniksen A.L.: Effect of microencapsulated phase change materials on the flow behavior of cement composites. Construction and Building Materials, (202), 2019, 353–362.
  • 36. Sathishkumar TP., Satheeshkumar S., Naveen J.: Glass fiber polymer composites – a review. Journal of Reinforced Plastics & Composites, (33), 2014, 1258–1275.
  • 37. Senthil V., Badapanda T., Chithambararaj A., Chandra Bose A., Mohapatra A.K., Panigrahi S.: Dielecric relaxation behavior and electrical conduction mechanism in polymer- ceramic composites based on Sr modified Barium Zirconium Titanate ceramic. Journal Polymer Research, (19), 2012, 89–98.
  • 38. Srinivasa Moorthy S., Manonmani K.: Fabrication and characterization of TiO2 particulate filled glass fiber reinforced polymer composite. Materials Physics and Mechanics, (18), 2013, 28–34.
  • 39. Tor-Świątek, A., Garbacz, T., Jachowicz, T.: Quantitative assessment of the microscopic structure of extruded and injected low-density polyethylene modified with microspheres by image analysis 2016; Cellular Polymers 35(2), 67–84.
  • 40. Tor-Świa̧tek, A.: Characteristics of physical structure of poly(vinyl chloride) extrudate modified with microspheres. Polimery/Polymers 2012; 57(7–8), 577–580.
  • 41. Valdez-Castillo M., Arriaga S.: Response of bioaerosol cells photocatalytic inactivation with ZnO and TiO2 impregnated onto perlite and poraver carries. Frontiers of Environmental Science & Engineering, 15 (3), 2021, 24–37.
  • 42. Wang, J., GangaoRao, H., Liang, R., Zhou, D.: Durability of glass fiber-reinforced polymer composites under the combined effects of moisture and sustained loads. Journal of Reinforced Plastics and Composites, 34 (21), 2015, 1739–1754.
  • 43. Wolff M.F.H., Salikov V., Antonyuk S., Heinrich S., Schneider G.A.: Novel, highly – filled ceramicpolymer composites synthesized by a spouted bed spray granulation process. Composites Science and Technology, (90), 2014, 154–159.
  • 44. Wongpajan R., Mathurosemontri S., Takematsu R., Xu H.Y., Uawongsuwan P., Thumsorn S., Hamada H.: Interfacial shear strength of glass fiber reinforced polymer composites by the modified rule of mixture and Kelly-Tyson model. Energy Procedia, (89), 2016, 328–334.
  • 45. Yern C., Kuan J.H., Cheng H.C., Viorel S.: Effects of high temperature and ultraviolet radiation on polymer composites. Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, 2019, 407–426.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db9d070a-b7f1-4dde-861c-5103bf83f050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.