PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Role of Organic Sulfur in the Formation of Methane Emissions on the Spontaneous Combustion of Coal

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spontaneous combustion of coal is a phenomenon that often occurs in open coal mining activities, especially strip mining and open pit mining systems which are detrimental to mining companies, the economy, the environment, and society. This phenomenon causes coal mining activities to contribute to CH4 gas emissions in global warming by 11% of total global emission. The purpose of this study was to analyze the role of organic sulfur in the formation of CH4 gas emissions in the spontaneous combustion of coal in the TAL area. The approach is based on a literature review and field survey. The literature review was intended to examine the influence of geological factors, maceral analysis, and depositional environment on the rank and form of coal sulfur, while the field survey was conducted by measuring CH4 gas emissions in 36 samples of spontaneous combustion hotspots. Literature review shows that coal in the TAL area belongs to low rank (sub-bituminous/sub-bituminous B) which has high organic sulfur content in the form of thiother bonds (C-S), especially carbon disulfide (CS2). The average CH4 emission measurement in the field is 6,989 mg/m3, which is still within the limits set by other researchers, between 3,700–34,098 mg/m3. The role of organic sulfur from C–S bonds especially CS2 in the formation of CH4 gas emissions, is very dominant at 93.10% or 6,507 mg/m3 of the total coal sulfur in the TAL area. The emission of CH4 gas in the spontaneous combustion of coal is strongly influenced by geological factors, maceral analysis, and the depositional environment related to the rank and form of coal sulfur. Further, detailed, and comprehensive research on the form of organic sulfur needs to be carried out to mitigate CH4 gas emissions in the spontaneous combustion of coal in the TAL area.
Rocznik
Strony
192--201
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
  • Mining Engineering Department, Faculty of Engineering Sriwijaya University, Jalan Raya Palembang Prabumulih Indralaya, South Sumatra, 30862, Indonesia
Bibliografia
  • 1. Ahamed S., Monir M.U., Biswas P.K., Khan A.A. 2016. Investigation the risk of spontaneous combustion in Barapukuria Coal Mine, Dinajpur, Bangladesh. Journal of Geoscience and Environment Protection, 4, 74–79.
  • 2. Aldhafeeri T., Tran M.K., Vrolyk R., Pope M., Fowler M. 2020. A Review of methane gas detection sensors: Recent Developments and Future Perspectives. Inventions, 5(28), 1–18.
  • 3. Amijaya D.H. 2005. Paleoenvironmental, paleoecological and thermal metamorphism implications on the organic petrography and organic geochemistry of tertiary Tanjung Enim coal, South Sumatra Basin, Indonesia. Ph.D Thesis, Institute of Geology and Geochemistry of Petroleum and Coal, Aachen University, Germany.
  • 4. Arisanti R., Yusuf M., Faizal M. 2018. Study of the effect of proximate, ultimate, and calorific value analysis on methane gas rmission (CH4) on combustion of coal for sustainable environment. Science and Technology Indonesia, 3(2), 100–106.
  • 5. Belkin H.E., Tewalt S.J., Hower J.C., Stucker J.D., O’keefe. 2009. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia. International Journal of Coal Geology, 77, 260–268.
  • 6. Beswick-Honn J.M., Peters T.M., Anthony T.R. 2017. Evaluation of low-cost hydrogen sulfide Mmonitors for use in livestock production. Journal of Agricultural Safety and Health, 23(4), 265–279.
  • 7. Bogdan V.I., Pokusaeva Y.A., Koklin A.E., Savilov S.V., Chernyak S.A., Lunin V.V., Kustov L.M. 2021. Carbon dioxide reduction with hydrogen on carbon-nanotube-supported catalysts under supercritical conditions. Molecules, 26, 1–10.
  • 8. Borah D., Baruah M.K., Haque I. 2001. Oxidation of high sulphur coal. Part 1. Desulphurisation and evidence of the formation of oxidised organic sulphur species. Fuel, 80, 501–507.
  • 9. Chaichana N., Bellingrath-Kimura C.D., Komiya S., Fujii Y., Noborio K., Dietrich O., Pakoktom T. 2018. Comparison of closed chamber and eddy covariance methods to improve the understanding of methane fluxes from rice paddy fields in Japan. Atmosphere, 9, 1–16.
  • 10. Damayanti R., Khaerunissa, H. 2018. Carbon dioxide emission factor estimation from Indonesian coal. Indonesian Mining Journal, 21(1), 45–58.
  • 11. Daulay B., Santoso B. 2008. Characteristics of selected Sumateran tertiary coals regarding petrographic analyses. Indonesian Mining Journal, 11(10), 1–18.
  • 12. Deng J., Ma X., Zhang Y., Li Y., Zhu W. 2015. Effects of pyrite on the spontaneous combustion of coal. Int J Coal Sci Technol, 2(4), 306–311.
  • 13. Dong M., Zheng C., Miao S., Zhang Y., Du Q., Wang Y., Tittel F.K. 2017. Development and measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 detection. Sensors, 17, 1–14.
  • 14. Fabianska M., Ciesielczuk J., Nadudvari A., Misz-Kennan M., Kowalski A., Kruszewski L. 2019. Environmental influence of gaseous emissions from selfheating coal waste dumps in Silesia, Poland. Environ Geochem Health, 41, 575–601.
  • 15. Gao F., Jia Z., Qin M., Mu X., Teng Y., Li Y., Bai Q. 2022. Effects of organic sulfur on oxidation spontaneous combustion characteristics of coking coal. Energy Exploration & Exploitation, 40(1), 193–205.
  • 16. Glarborg P., Halaburt B., Marshall P., Guillory A., Troe J., Thellefsen M., Christensen K. 2014. Oxidation of reduced sulfur species: carbon disulfide. J. Phys. Chem. A, 118(34), 6798–6809.
  • 17. Gorka M., Bezyk Y., Strapo D., Necki J. 2022. The origin of GHG’s emission from self-heating coal waste dump: Atmogeochemical interactions and environmental implications. International Journal of Coal Geology, 250, 1–16.
  • 18. Hanuz Z., Tarasinska J., Zielinski W. 2016. Shapiro-Wilk test with known mean. Revstat. Statistical Journal, 14(1), 89–100.
  • 19. Heinemeyer A., McNamara N.P. 2011. Comparing the closed static versus the closed dynamic chamber flux methodology: Implications for soil respiration studies. Springer. Plant Soil, 346, 145–151.
  • 20. Hongqing Z., Minggran C., Haiyan W. 2017. Study on primal CO gas generation and emission of coal seam. International Journal of Mining Science and Technology, 27, 973–979.
  • 21. Hosseini H., Javadi M., Moghiman M., Rad M.H.G. 2010. Carbon disulfide production via hydrogen sulfide methane reformation. World Academy of Science, Engineering and Technology, 62, 628–631.
  • 22. Jati S.N., Sutriyono E., Hastuti E.W.D. 2020. Coal properties and cleat attributes at Tanjung Enim coal-field in South Palembang Sub-basin, South Sumatra. Proc. AIP Conference, 2245, 1–8.
  • 23. Jia X., Qi Q., Zhao Y., Zhou X., Dong Z. 2021. Determination of the spontaneous combustion hazardous zone and analysis of influencing factors in bedding boreholes of a deep coal seam. ACS Omega, 6, 8418–8429.
  • 24. Kholod N., Evan M., Pilcher R.C., Roshchanka V., Ruiz F., Cote M., Colling R. 2020. Global methane emissions from coal mining to continue growing even with declining coal production. Journal of Cleaner Production, 256, 1–12.
  • 25. Kwak S.G., Park S.H. 2019. Normality test in clinical research. Rheum Dis., 26(1), 5–11.
  • 26. Lamb W.F., Wiedmann T., Pongratz J., Andrew R., Crippa M., Oliver J.G.J., Wiedenhofer D., Mattioli G., Al Khourdajie A., House J., Pachauri S., Figueroa M., Saheb Y., Slade R., Hubacek K., Sun L., Ribeiro S.K., Khenas S., Can D.L.R.D., Chapungu L., Davis S.J., Bashmakov I., Dai H., Dhakal S., Tan X., Geng Y., Gu B., Minx J. 2021. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett., 16, 1–31.
  • 27. Lang L., Fu-bao Z. 2010. A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining. International Journal of Coal Geology, 82, 27–36.
  • 28. Lilley W., Day S., Williams D., Rae M., Carras J. 2012. A comparison of three methods for the quantification of greenhouse gas emissions from spontaneous combustion in open-cut coal mines. Greenhouse Gas Measurement & Management, 2, 93–105.
  • 29. Liu S., Wu Y., Xhou C., Wu J., Zhang Y. 2020. Study on the CO formation mechanism during coal ambient temperature oxidation. Energies, 13, 1–11.
  • 30. Marwanza I., Nas C., Azizi M.A., Kurniawati R., Ardiansyah. 2021. The zonation of coal rank in Muara Enim formation based on the reflection study. Journal of Southwest Jiaotong University, 56(4), 484–490.
  • 31. Maulana A., Anggara F. 2020. The Characteristic of heat affected coal in Air Laya Mine, South Sumatra and its potential as an alternative source of syntetic graphite. Buletin Sumber Daya Geologi, 15(3), 184–200.
  • 32. Miller J.R., Gannon J.P., Corcoran K. 2019. Concentrations, mobility, and potential ecological risks of selected metals within compost amended, reclaimed coal mine soils, tropical South Sumatra, Indonesia. AIMS Environmental Science, 6(4), 298–325.
  • 33. Minamikawa K., Tokida T., Sudi S., Padre A., Yagi K. 2015. Guidelines for measuring CH4 and N2O emissions from rice paddies by a manually operated closed chamber method. Global Research Alliance on Agricultural Greenhouse Gases (PRRG-GRA). National Institute for Agro-Environmental Sciences, Kannondai, Tsukuba, Ibaraki, Japan.
  • 34. Mirdha S.K. 2012. Investigation into role of intrinsic factors in the spontaneous heating of coals. Theses, Bachelor of Technology in Mining Engineering, Department of Mining Engineering of Technology, National Institute of Technology, Rourkela.
  • 35. Nafian M.A., Rizal Y. 2021. Coal geology of the Tanjung Enim area, Muara Enim Regency, South Sumatra Province. Bulletin of Geology, 5(2), 589–611.
  • 36. Onifade M., Genc B. 2018. Spontaneous combustion of coals and coal-shales. International Journal of Mining Science and Technology, 28, 933–940.
  • 37. Onifade M., Genc B. 2019. Spontaneous combustion liability of coal and coal-shale: a review of prediction methods. Int J Coal Sci Technol, 6(2), 151–168.
  • 38. Onifade M., Genc B. 2020. A review of research on spontaneous combustion of coal. International Journal of Mining Science and Technology, 30, 303–311.
  • 39. Ozdeniz H., Sivrikaya O., Sensogut C. 2014. Investigation of spontaneous combustion of coal in underground coal mining. In: Drebensteds, C., Singhal, R (Eds.). Mine Planning and Equipment Selection, Proceeding of the 22nd MPES Conference Dresden, Germany, Springer International Publishing Switzerland, 637–644.
  • 40. Patnaik S., Bhatawdekar R., Edy M.T., Gore M. 2017. Briquette technology of low grade Indonesian coal. Journal of Mines, Metals and Fuels, 65(5), 269–272.
  • 41. Phenrat P. 2020. Community citizen science for risk management of a spontaneously combusting coalmine waste heap in Ban Chaung, Dawei District, Myanmar. Research Article. GeoHealth, Advancing Earth and Space Science, 4(6), 1–16.
  • 42. Pihlatie M.K., Christiansen J.R., Aaltonena H., Janne F.J., Korhonen J.F.J., Nordbo A., Rasilo T., Benanti G., Giebels M., Helmy M., Sheehy J., Jones S., Juszczak R., Klefoth R., Raquel Lobo-do-Vale R., Rosa A.P., Schreiber P., Serca D., Viccar S., Wolf B., Pumpanen J. 2013. Comparison of static chambers to measure CH4 emissions from soils. Agricultural and Forest Meteorology, 171–172, 124–136.
  • 43. Pone J.D.N., Hein K.A.A., Stracher G.B., Annegarn H.J., Finklemen R.B., Blake D.R., McCormack J.K., Schroeder P. 2007. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal of Coal Geology, 72, 124–140.
  • 44. Purnama A.B., Salinita S., Sudirman S., Senjaya Y.A., Muljana B. 2018. Interpretation of depositional environment of coal seam D, Muara Enim formation, Suban Burung Block, South Sumatera Basin. Jurnal Teknologi Mineral dan Batubara, 14(1), 1–18.
  • 45. Qi Y., Wang W., Qi Q., Ning Z., Yao Y. 2021. Distribution of spontaneous combustion three zones and optimization of nitrogen injection location in the goaf of a fully mechanized top coal caving face. Research Article. Plos One, 16(9), 1–13.
  • 46. Rahman H.H. 2018. Climate change scenarios in Malaysia: Engaging The Public. IJoM-NS, 1(2), 55–77.
  • 47. Rich A.L., Patel J.T. 2015. Carbon disulfide (CS2) mechanisms in formation of atmospheric carbon dioxide (CO2) formation from unconventional shale gas extraction and processing operations and global climate change. Environmental Health Insights, 9, 35–39.
  • 48. Sahay V.K. 2010. On the fundamental relationship between coal rank and coal type. Jour.Geol.Soc. India, 75, 453.
  • 49. Santoso B. 2017. Petrographic characteristics of selected tertiary coals from Western Indonesia according to their geological aspect. Indonesian Mining Journal, 20(1), 1–30.
  • 50. Sari S.L., Rahmawati M.A., Triyoga A., Idarwati. 2017. Impact of sulphur content on coal quality at delta plain depositional environment: Case study in Geramat District, Lahat Regency, South Sumatra. Journal of Geoscience, Engineering, Environment, and Technology, 2(3), 183–190.
  • 51. Schweinfurth S.P. 2009. An Introduction to coal quality. In: Pierce, B.S., Dennen, K.O (eds.), Chapter C of The National Coal Resource Assessment Overview, U.S. Geological Survey, Reston, Virginia.
  • 52. Singh R.V.K. 2013. Spontaneous heating and fire in coal mines. Procedia Engineering, 62, 78–90.
  • 53. Sloss L. 2013. Quantifying emissions from spontaneous combustion. IEA Clean Coal Centre, 1–59.
  • 54. Sudarmanian N.S., Pazhanivelan S. 2019. Estimation of methane emission from rice fields using static closed chamber technique in Tiruchirapalli District. Journal of Pharmacognosy and Phytochemistry, 8(2), 756–761.
  • 55. Taherdoost H. 2022. What are different research approaches? Comprehensive review of qualitative, quantitative, and Mmixed Method Research, their applications, types, and limitations. Department of Arts, Communications and Social Sciences, University Canada West, Vancouver, Canada. Journal of Management Science & Engineering Research, 5(1), 53–63.
  • 56. Tomsik R. 2019. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov and Jarque-Bera tests. Scholars Scitech Research Organization, Online Publication Date, 3(3), 238–243.
  • 57. Umar F., Santoso B., Daulay B. 2012. Susceptibility to spontaneous combustion of some Indonesian Coals. Indonesian Mining Journal, 15(2), 100–109.
  • 58. Wang H., Chen C. 2015. Experimental study on greenhouse gas emissions caused by coal spontaneous combustion. Energy Fuels, 29, 5213–5221.
  • 59. Wang H., Dlugogorski B.Z., Kennedy E.M. 2003. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science, 29(6), 487–513.
  • 60. Wan-xing R., Zeng-hui K., De-ming. 2011. Causes of spontaneous combustion of coal and its prevention technology in The Tunnel Fall of Ground of extra-thick coal seam. First International Symposium on Mine Safety Science and Engineering Procedia Engineering, 26, 717–724.
  • 61. Wilkinson J., Bors C., Burgis F., Lorke A., Bodme P. 2018. Measuring CO2 and CH4 with a portable gas analyzer: Closed-loop operation, optimization and assessment. Research Article. Plos One, 13(4), 1–16.
  • 62. Wojtacha-Rychter K., Smolinski A. 2020. Profile of CO2, CO, and H2 emissions from thermal oxidation of Polish Coals. Materials, 13, 1–16.
  • 63. Wu B., Mu C. 2019. Effects on greenhouse Gas (CH4, CO2, N2O) emissions of conversion from over-mature forest to secondary forest and Korean Pine Plantation in Northeast China. Forests, 10, 1–18.
  • 64. Zamroni A., Sugarbo O., Prastowo R., Widiatmoko F.R., Safii Y., Wijaya R.A.E. 2020. The relationship between Indonesian coal qualities and their geologic histories. Conference Paper in AIP Conference Proceedings, 2245, 070005.
  • 65. Zhao Y., Qi Q., Jia X. 2021. Prediction model for spontaneous combustion of coal around boreholes using bedding gas drainage. Research Article, Hindawi Shock and Vibration, 2021, 1–11.
  • 66. Zeng Z., Dlugogorski B.Z. Oluwoyea I., Altarawneh M. 2019. Combustion chemistry of carbon disulphide (CS2). Combustion and Flame, 210, 413–425.
  • 67. Zhang L., Li Z., Yang Y., Zhou Y., Li J., Si L., Kong B. 2016. Research on the composition and distribution of organic sulfur in Coal. Molecules, 21, 1–13.
  • 68. Zhang L., Qi S., Takeda N., Kudo S., Hayashi J., Norinaga K. 2018. Characteristics of gas evolution profiles during coal pyrolysis and its relation with the variation of functional groups. Int J Coal Sci Technol, 5(4), 452–463.
  • 69. Zhafira K.H., Widiani A.S., Nugroho Y.S. 2018. Control of spontaneous combustion of sub-bituminous coal by means of heat exchanger submersion inside the piles. Journal of Physics: Conf. Series, 1107, 1–6.
  • 70. Zhu A., Wang Q., Liu D., Zhao Y. 2022. Analysis of the characteristics of CH4 emissions in China’s Coal Mining Industry and research on emission reduction measures. Int. J. Environ. Res. Public Health, 19, 1–17.
  • 71. Zhu, H., Sheng, K., Zhang, Y., Fang, S., Wu, Y. 2018. The stage analysis and countermeasures of coal spontaneous combustion based on “five stages” division. Research Article. Plos One, 13(8), 1–15.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db90469f-f4d8-426a-a193-97fdb4acd7a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.