PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the turbulent boundary layer of a dry granular avalanche down an incline. II – closure model and numerical simulations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dynamic responses of the closure relations, specific turbulent Helmholtz free energy and turbulent viscosity are postulated followed by experimental calibrations. The established closure model is applied to analyses of a gravity-driven stationary avalanche with incompressible grains down an incline. While the mean velocity and volume fraction increase from their minimum values on the plane toward maximum values on the free surface exponentially, two-fold turbulent kinetic energies and dissipations evolve in a reverse manner. Most two-fold turbulent kinetic energies and dissipations are confined within the thin turbulent boundary layer immediately above the plane, with nearly vanishing two-fold turbulent kinetic energies and finite two-fold turbulent dissipations in the passive layer. The two layers are similar to those of Newtonian fluids in turbulent boundary layer flows, and are preferable recognized by the distributions of turbulent kinetic energies and dissipations.
Rocznik
Strony
1245--1256
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • National Cheng Kung University, Department of Civil Engineering, Tainan City, Taiwan
Bibliografia
  • 1. Ai J., Langston P.A., Yu H.-S., 2014, Discrete element modeling of material non-coaxiality in simple shear flows, International Journal for Numerical and Analytical Methods in Geomechanics, 38, 6, 615-635
  • 2. Batchelor G.K., 1993, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge New York
  • 3. Bauer E., Herle I., 2000, Stationary states in hypoplasticity, [In:] Constitutive Modeling of Granular Materials, Kolymbas D. (ed.), Springer Verlag, Berlin, 167-192
  • 4. Buscamera G., 2014, Uniqueness and existence in plastic models for unsaturated soils, Acta Geotechnica, 9, 313-327
  • 5. Fang C., 2008, Modeling dry granular mass flows as elasto-visco-hypoplastic continua with microstructural effects. II. Numerical simulations of benchmark flow problems, Acta Mechanica, 197, 191-209
  • 6. Fang C., 2009, Gravity-driven dry granular slow flows down an inclined moving plane: a comparative study between two concepts of the evolution of porosity, Rheologica Acta, 48, 971-992
  • 7. Fang C., 2016a, A k-ε turbulent closure model of an isothermal dry granular dense matter, Continuum Mechanics and Thermodynamics, 28, 4, 1048-1069
  • 8. Fang C., 2016b, On the turbulent boundary layer of a dry granular avalanche down an incline. I. Thermodynamic analysis, Journal of Theoretical and Applied Mechanics, 54, 3, 1051-1062
  • 9. Fang C., Wu W., 2014, On the weak turbulent motions of an isothermal dry granular dense flow with incompressible grains. Part II. Complete closure models and numerical simulations, Acta Geotechnica, 9, 739-752
  • 10. Fellin W., 2013, Extension to barodesy to model void ratio and stress dependency of the K0 value, Acta Geotechnica, 8, 561-565
  • 11. Fuentes W., Triantaftllidis T., Lizcano A., 2012, Hypoplastic model for sands with loading surface, Acta Geotechnica, 7, 177-192
  • 12. Herle I., Gudehus G., 1999, Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies, Mechanics of Cohesive and Frictional Materials, 4, 461-485
  • 13. Kirchner N., Teufel A., 2002, Thermodynamically consistent modeling of abrasive granular materials. II: Thermodynamic equilibrium and applications to steady shear flows, Proceeding of Royal Society London A, 458, 3053-3077
  • 14. Marcher Th., Vermeer P.A., Wolffersdorf P.-A., 2000, Hypoplastic and elastoplastic modeling – a comparison with test data, [In:] Constitutive Modeling of Granular Materials, Kolymbas D. (ed.), Springer Verlag, Berlin, 353-371
  • 15. Niemunis A., Grandas-Tavera C.E., Prada-Sarmiento L.F., 2009, Anisotropic viscohypoplasticity, Acta Geotechnica, 4, 293-314
  • 16. Pudasaini S., Hutter K., 2007, Avalanche Dynamics, Springer Verlag, Berlin Heidelberg
  • 17. Rao K.K., Nott P.R., 2008, Introduction to Granular Flows, Cambridge University Press, London New York
  • 18. Richman M.W., Marciniec R.P., 1990, Gravity-driven granular flows of smooth, inelastic spheres down bumpy inclines, Journal of Applied Mechanics, 57, 1036-1043
  • 19. Savage S.B., 1993, Mechanics of granular flows, [In:] Continuum Mechanics in Environmental Sciences and Geophysics, Hutter K. (ed.), Heidelberg, Springer, 467-522
  • 20. Tsinober A., 2009, An Informal Conceptual Introduction to Turbulence, Springer, Heidelberg
  • 21. Wang Y., Hutter K., 1999, A constitutive theory of fluid-saturated granular materials and its application in gravitational flows, Rheologica Acta, 38, 214-223
  • 22. Wang Y., Hutter K., 2001, Granular material theories revisited, [In:] Geomorphological Fluid Mechanics, Balmforth N.J., Provenzale A. (eds.), Heidelberg, Springer, 79-107
  • 23. Wendt J.F., 2009, Computational Fluid Dynamics: An Introduction, Springer, Berlin Heidelberg
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db8cf343-7b83-43d6-882b-f09b336e6450
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.