PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technology for complex parts machining in multiproduct manufacturing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
At present, the speed of production and its complexity increases with each passing year due to the shorter product life cycle and competition in the global market. This trend is also observed in the machine-building industry, therefore, in order to ensure the competitiveness of enterprises and reduce the cost of production, it is necessary to intensify production. This is especially true in the machining of complex parts that require a great number of setups, and technological equipment. The problem-oriented analysis of complex parts was carried out, the parts classification was structured and developed according to the design and technological features. This made it possible to offer advanced manufacturing processes for complex parts like levers, forks, and connecting rods. The flexible fixtures for specified complex parts were developed. The effectiveness of the proposed manufacturing processes, as compared with the typical ones, provides significant improvement in the production.
Twórcy
  • Sumy State University, Department of Manufacturing Engineering, Machines and Tools, 2 Rymskogo-Korsakova St., Sumy, 40007, Ukraine
  • Sumy State University, Department of Manufacturing Engineering, Machines and Tools, Ukraine
  • Sumy State University, Department of General Mechanics and Machine Dynamics, Ukraine
autor
  • Sumy State University, Department of Manufacturing Engineering, Machines and Tools, Ukraine
autor
  • Sumy State University, Department of Manufacturing Engineering, Machines and Tools, Ukraine
Bibliografia
  • [1] Krol O., Sokolov V., Modelling of spindle nodes for machining centers, Journal of Physics: Conference Series, 1084(1), 012007, 2018, doi: 10.1088/1742-6596/1084/1/012007.
  • [2] Cioata V.G., Alexa V., Ratiu S.A., Study of the stiffness of modular fixtures using the finite element method, IOP Conference Series: Materials Science and Engineering, 393(1), 012036, 2018, doi: 10.1088/1757-899X/393/1/012036.
  • [3] Daneshjo N., Pajerska E.D., Hajduova Z., Gajdos J., Danishjoo E., Computer supported design of logistic production technology, TEM Journal, 8(1), 18–27, 2019, doi: 10.18421/TEM81-03.
  • [4] Woolliscroft P., Caganova D., Cambal M., Holecek J., Pucikova L., Implications for optimisation of the automotive supply chain through knowledge management, Procedia CIRP, 7, 211–216, 2013, doi: 10.1016/j.procir.2013.05.036.
  • [5] Vukelic D., Tadic B., Miljanic D., Budak I., Todorovic P.M., Randjelovic S., Jeremic B.M., Novel workpiece clamping method for increased machining performance, Tehnicki Vjesnik, 19(4), 837–846, 2012.
  • [6] Gangala C., Modi M., Manupati V.K., Varela M.L.R., Machado J., Trojanowska J., Cycle time reduction in deck roller assembly production unit with value stream mapping analysis, Advances in Intelligent Systems and Computing, 571, 509–518, 2017, doi: 10.1007/978-3-319-56541-5_52.
  • [7] Reis L., Varela M.L.R., Machado J.M., Trojanowska J., Application of lean approaches and techniques in an automotive company, Romanian Review Precision Mechanics, Optics and Mechatronics, 2016(50), 112–118, 2016.
  • [8] Monka P., Monkova K., Edl M., Zidkova H., Duchek V., Fundamental requirements for CAPP software design focusing on industry 4.0 specific features, Lecture Notes in Mechanical Engineering, 9783319895628, 146–155, 2018, doi: 10.1007/978-3-319-89563-5_11.
  • [9] Kuric I., Cisar M., Tlach V., Zajacko I., Gal T., Wiecek D., Technical diagnostics at the department of automation and production systems, Advances in Intelligent Systems and Computing, 835, 474–484, 2019, doi: 10.1007/978-3-319-97490-3 46.
  • [10] Cisar M., Kuric I., Cubonova N., Kandera M., ˇ Design of the clamping system for the CNC machine tool, MATEC Web of Conferences, 137, 01003, 2017, doi: 10.1051/matecconf/201713701003.
  • [11] Židek K., Hosovsky A., Pitel’ J., Bednar S., Recognition of assembly parts by convolutional neural networks, Lecture Notes in Mechanical Engineering, 2019, 281–289, 2019, doi: 10.1007/978-3-319-99353-9_30.
  • [12] Bartkowiak T., Ciszak O., Jablonski P., Myszkowski A., Wisniewski M., A simulative study approach for improving the efficiency of production process of floorboard middle layer, Lecture Notes in Mechanical Engineering, 201519, 13–22, 2018, doi: 10.1007/978-3-319-68619-6_2.
  • [13] Wojciechowski J., Pietrowiak A., Ciszak O., Wisniewski M., Modular flexible production system – construction and application in education, Proceedings of the ASME Design Engineering Technical Conference, 9, V009T07A056, 2015, doi: 10.1115/DETC2015-47262.
  • [14] Redko R., Zabolotnyi O., Redko O., Savchuk S., Kovalchuk V., Improvement of manufacturing technology and recovery of clamping collets for lathe automats, Advances in Design, Simulation and Manufacturing II. DSMIE 2019, Lecture Notes in Mechanical Engineering, Springer, Cham, pp. 290–301, 2020, doi: 10.1007/978-3-030-22365-6_29.
  • [15] Dobrotvorskiy S., Basova Y., Kononenko S., Dobrovolska L., Ivanova M., Numerical deflections analysis of variable low stiffness of thin-walled parts during milling, Advances in Design, Simulation and Manufacturing II. DSMIE 2019, Lecture Notes in Mechanical Engineering, Springer, Cham, pp. 43–53, 2020, doi: 10.1007/978-3-030-22365-6_5.
  • [16] Varela M.L.R., Putnik G.D., Manupati V.K., Rajyalakshmi G., Trojanowska J., Machado J., Collaborative manufacturing based on cloud, and on other I4.0 oriented principles and technologies: a systematic literature review and reflections, Management and Production Engineering Review, 9(3), 90–99, 2018, doi: 10.24425/119538.
  • [17] Hamrol A., A new look at some aspects of maintenance and improvement of production processes, Management and Production Engineering Review, 9(1), 34–43, 2018, doi: 10.24425/119398.
  • [18] Hamrol A., Zerbst S., Bozek M., Grabowska M., Weber M., Analysis of the conditions for effective use of numerically controlled machine tools, Lecture Notes in Mechanical Engineering, 201519, 3–12, 2018, doi: 10.1007/978-3-319-68619-6_1.
  • [19] Pawel M., Jastrzebska J., Simplifications of the volumetric error model because of the structural loop of machine tools, Archives of Mechanical Technology and Materials, 39, 11–15, 2019, doi: 10.2478/amtm2019-0003.
  • [20] Tarelnyk V., Martsynkovskyy V., Dziuba A., New method of friction assemblies reliability and endurance improvement, Applied Mechanics and Materials, 630, 388–396, 2014, doi: 10.4028/www.scientific.net/AMM.630.388.
  • [21] Pylypaka S.F., Klendii M.B., Klendii O.M., Particle motion on the surface of a concave soil-tilling disk, Acta Polytechnica, 58(3), 201–208, 2018, doi: 10.14311/AP.2018.58.0201.
  • [22] Skrynkovskyy R.M., Yuzevych V.M., Kataev A.V., Pawlowski G., Protsiuk T.B., Analysis of the methodology of constructing a production function using quality criteria, Journal of Engineering Sciences, 6(1), B1–B5, 2019, doi: 10.21272/jes.2019.6(1).b1.
  • [23] Zaloga V., Yashyna T., Dynnyk O., Analysis of the theories for assessment of the quality management product efficiency, Journal of Engineering Sciences, 5(2), B1–B5, 2018, doi: 10.21272/jes.2018.5(2).b1.
  • [24] Kabele P., Edl M., Increasing the efficiency of the production process due to using methods of industrial engineering, Advances in Design, Simulation and Manufacturing II. DSMIE 2019, Lecture Notes in Mechanical Engineering, Springer, Cham, pp. 126–137, 2020, doi: 10.1007/978-3-030-22365- 6_13.
  • [25] Ivanov V., Dehtiarov I., Pavlenko I., Kosov M., Hatala M., Technological assurance and features of fork-type parts machining, Advances in Design, Simulation and Manufacturing II. DSMIE 2019, Lecture Notes in Mechanical Engineering, Springer, Cham, pp. 114–125, 2020, doi: 10.1007/978-3-030-22365- 6_12.
  • [26] Martins S., Varela M.L.R., Machado J., Development of a system for supporting industrial management, Advances in Design, Simulation and Manufacturing II. DSMIE 2019, Lecture Notes in Mechanical Engineering, Springer, Cham, pp. 209–215, 2020, doi: 10.1007/978-3-030-22365-6_21.
  • [27] Wang M.Yu., An optimum design for 3-D fixture synthesis in a point set domain, IEEE Transactions on Robotics and Automation, 16(6), 839–846, 2000.
  • [28] Karpus V., Ivanov V., Dehtiarov I. et al., Technological assurance of complex parts manufacturing, [in:] Ivanov V. et al. [Eds], Advances in Design, Simulation and Manufacturing. DSMIE-2018. Lecture Notes in Mechanical Engineering, Springer, Cham, pp. 51–61, 2019, doi: 10.1007/978-3-319-93587-4_6.
  • [29] Ivanov V., Mital D., Karpus V. et al.Numerical simulation of the system “fixture – workpiece” for levers machining, The International Journal of Advanced Manufacturing Technology, 91(1–4), 79–90, 2017, doi: 10.1007/s00170-016-9701-2.
  • [30] Gothwal S., Raj T., Different aspects in design and development of flexible fixtures: review and future directions, International Journal of Services and Operations Management, 26(3), 386–410, 2017, doi: 10.1504/IJSOM.2017.081944.
  • [31] Ivanov V., Zajac J., Flexible fixtures for CNC machining centers in multiproduct manufacturing, EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 4(12), e5, 2018, doi: 10.4108/eai.10-1-2018.153552.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db8c1278-1b39-49d7-a005-fc7647e3e987
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.