PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of tectonic setting on groundwater chemical composition in the Peshkopi gypsum karst area, Korab Mountains, Eastern Albania

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
The diversity of groundwater chemistry in the Peshkopi gypsum karst area may be related to its setting within the tectonically active Korab Massif (Albania), as shown by field tests of temperature, pH, Eh and EC, and sampling of the waters for chemical analysis (both major and trace components) from cool brackish springs and mineralized thermal springs. The relationship between the chemical composition of the spring waters and of the reservoir rocks was elucidated by analysis of anhydrite-gypsum rocks and experimental dissolution of an anhydrite-gypsum sample. Statistical analysis was used in the processing of hydrochemical data. Comparison of analytical results from 2019 with earlier data indicates compositional stability of the groundwaters over time. Our results together with statistical analysis of the hydrochemical data support an earlier hypothesis of two systems of groundwater circulation within the anhydrite-gypsum deposits of the Peshkopi region. A shallow circulation system involves cold (10-14°C), mainly brackish SO4-Ca waters with very low concentrations of Na+ and Cl- ions, reflecting their formation in a sulphate rock environment that probably corresponds spatially with a gypsum layer formed by hydration of anhydrite in the near-surface zone. A deep circulation system conditioned, inter alia, by the presence of a large fault, brings to the surface water at up to 44°C, saturated with H2S, mineralized, of the SO4-Ca type with an increased content of Na, K, HCO3, Cl, BO3 and SiO2>/sub>. The chemical composition of these waters, regardless of the presence of large amounts of sulphates, is significantly different and suggests the influence of other factors on their formation, such as slow circulation, contact with flysch rocks in the fault zone and the mixing of deep and near-surface waters in the final part of their ascent to the surface.
Rocznik
Strony
art. no. 19
Opis fizyczny
Bibliogr. 38 poz., fot., map., tab., wykr.
Twórcy
autor
  • University of Silesia, Faculty of Natural Sciences, Institute of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
  • Independent Researcher, Reshit Çollaku, pll. 10/3/18, Tirana, Albania
  • University of Warsaw, Faculty of Geography and Regional Studies, Krakowskie Przedmieście 30, 00-927 Warszawa, Poland
  • AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, al. Mickiewicza 30, 30-059, Kraków, Poland
Bibliografia
  • 1. Aliaj, Sh., 1992. Tectonic windows of the external zones in the region of Peshkopi (Eastern Albania). Bulletin of Geological Society of Greece, 38: 51-360.
  • 2. Aliaj, Sh., 1998. Neotectonics structure of Albania. Journal of Natural and Technical Sciences, 4: 79-98.
  • 3. Aliaj, Sh., 2012. Neotectonics of Albania (in Albanian). Klean, Tirana.
  • 4. Andreychouk, V., Eftimi, R., Nita, J., Klimchouk, A., 2021. Geomorphology and hydrogeology of an exposed evaporite dome: the Dumre karst area, Central Albania. Geological Quarterly, 65 (4): 55; https://doi.org/10.7306/gq.1624
  • 5. Arsovski, M., 1974. General characteristics of neotectonics structurein SFR Yugoslavia. Proc. of the Seminar on the Seismotectonic Map of the Balkan Region. Dubrovnik, 17-26 April 1973. UNESCO, Skopje.
  • 6. Avgustinski, V.L., Astashkina, A.A., Shukevich, Ll., 1957. Mineral water resources of Albania. Health Ministry. Central Archive, Albanian Geological Survey.
  • 7. Bassi, S., Fabri, I., Scaravelli D., 1999. Speciale Albania. Ipogea, 99: 39-63.
  • 8. Borović, S., Marković, T., Larva, O., Brkić., Mraz, V., 2016. Mineral and thermal waters in Croatian part of the Pannonian Basin.
  • 9. P. Papie (ed). Mineral and Thermal Waters of Southeastern Europe: 31-45; https://doi.org/10.1007/978-3-319-25379-4_2
  • 10. Calafora, J.M., Pulido Bosch, A., 1993. The hydrogeochemistry and morphology of the Triassic gypsum in the Salinas-Fuente Camacho area (Granada). In: Some Spanish karst aquifers (ed. A. Pulido Bosch). University of Granada, Spain.
  • 11. Castelazzo, I., Mitani, Y., 2012. On the use of the mean squared error as a proficiency index. Accreditation and Quality Assurance, 17: 95-97; https://doi.org/10.1007/s00769-011-0855-1
  • 12. Chalton, D.O., Troskie, C.G. 2001. A comparison of generalized ridge regression estimators through estimates of their mean squared errors. South African Statistical Journal, 35: 175-180.
  • 13. Chen, Z., Goldscheider, N., Auler, A.S., Bakalowicz, M., Broda, S., Drew, D., Hartmann, J., Jiang, G., Moosdorf, N., Richts, A., Stevanović, Z., Veni, G., Dumont, A., Aureli, A., Clos, P., Krombholz, M., 2017. World Karst Aquifer Map. IAH, UNESCO, Paris; https://doi.org/10.25928/b2.21_sfkq-r406
  • 14. Chiesi, M., De Waele, J., Forti, P., 2010. Origin and evolution of a salty gypsum/anhydride karst spring: the case of Poiano (Northern Apennines, Italy). Hydrogeology Journal, 18: 1111-1124; https://doi.org/10.1007/s10040-010-0576-2
  • 15. De Waele, J., Piccini, L., Coclumbu, A., Madona, G., Vattano, M., Calligaris, C., D'Angeli, M., Chiesi, M., Sivelli, B., Zini, L., Chiarini, V., Sauro, F., Drysdale, R., Forti, P., 2017. Evaporite karst in Italy: a review. International Journal of Speleology, 46:137-168; https://doi.org/10.5038/1827-806X.46.2.2107
  • 16. Dušan, B., Kordik, J., Slaninka, I., Malik, P., Liščák, P., Božikova, J., Marcin, D., 2010. Mineral waters in Slovakia - evaluation of chemical composition stability using both historical records and most recent data. Journal of Geochemical Exploration, 107: 382-390; https://doi.org/10.1016/j.gexplo.2010.06.009
  • 17. Eftimi, R., 2010. Hydrogeological characteristics of Albania. AQUAmundi, 1012: 079-092.
  • 18. Eftimi, R., 2020. Karst and karst water resources of Albania and their management. Carbonates and Evaporites, 35: 1-14; https://www.researchgate.net/publicatio/274456473
  • 19. Eftimi, R., Frasheri, A., 2016. Thermal and Mineral Waters of Albania. Tirana .
  • 20. Eftimi, R., Frasheri, A., 2018. Regional hydrogeological characteristics of thermal water of Albania. Acta Geographica Silesiana, 12 (2). WNoZ UŚ, Sosnowiec.
  • 21. Eftimi, R., Bisha, G., Tafilaj, I., Habilaj, L., 1985. Hydrogeological map of Albania, scale 1:200,000. Published by Hamid Shijaku, Tirana.
  • 22. Eftimi, R., Parise, M., Liso I. S., 2022. Karst brackish springs of Albania. Hydrology, 9, 127; https://doi.org/10.3390/hydrology9070127
  • 23. Ford, D., Williams, W., 2007 Karst hydrogeology and geomorphology: Chichester, U.K. John Wiley and Sons, Ltd.; https://doi.org/10.1002/9781118684986
  • 24. Franko, O., Melioris, L., 1989. Condition, and extension of mineral and thermal waters in the Westen Carpathians. Slovak Geological Magazine, 5 :93-107.
  • 25. Goldscheider, N., Chen, Z., Auler, A.S., Bakalowicz, M., Broda, S., Drew, D., Hartman, J., Jiang, G., Moosdorf, N., Stavanović, Z., Ven, G., 2020. Global distribution of carbonate rocks and karst water resources. Hydrogeological Journal, 28: 1661-1677; https://doi.org/10.1007/s10040-020-02139-5
  • 26. Gutiérrez, F., Calaforra, J.M., Cardona, F., Ortí, F., Durán, J.J., Garay, P., 2008. Geological and environmental implications of the evaporite karst in Spain. Environmental Geology, 53: 951-965; https://doi.org/10.1007/s00254-007-0721-y
  • 27. Jaho, S., Mici, A., Borięi, M., Mukeli, R., Naęi, R., 1975. Climate of Albania (in Albanian). Institute of Hydrometeorology, Tirana. Jóźwiak, K., Andrejczuk, V., Różkowski, J., 2012. Results of geochemical modelling of groundwater in the gypseous Triassic series of the Deshat Korab Mountain (in Polish). Biuletyn Państwowego Instytutu Geologicznego, 451: 107-113.
  • 28. Klimchouk, A., Andrejchouk, V., 1996. Sulphate rocks as an area for karst development. International Journal of Speleology, 25: 9-20; http://dx.doi.org/10.5038/1827-806X.25.3.1
  • 29. Klimchouk, A.B., Lowe, D., Coper, A., Sauro, U., eds., 1996. Gypsum karst of the world. International Journal of Speleology, 23:159-181.
  • 30. Lambrakis, N., Kallergis, G., 2004. Contribution to the study of Greek thermal springs: hydrogeological and hydrochemical characteristics and origin of thermal waters. Hydrogeology Journal, 13: 506-521; https://doi.org/10.1007/s10040-004-0349-x
  • 31. Meço, N., Aliaj, Sh., 2000. Geology of Albania. Gebrüder Borntraeger, Berlin.
  • 32. Melo, V., 1966. Nontectonic structure of inner tectonic domain (in Albanian). Archive of Seismological Institute, Albania, Tirana. Melo, V., Aliaj, Sh., Kodra, A., Xhomo, A., Naęo, P., Lula, P., Gjata, K., Hoxha, V., 1991.The tectonic windows inouterzones in eastern Albanides. Bul. Shk. Gjeol., 1: 21-30.
  • 33. Omelon, C.R., Pollard, W.H., Anderson, D.T., 2006. Ageochemical evaluation of perennial spring activity and associated mineral precipitates at Expedition Fjord. Axel Heiberg Island, Canadian High Arctic. Applied Geochemistry, 21: 263-416; https://doi.org/10.1016/j.apgeochem.2005.08.004
  • 34. Safanda, J., Bakalli, F., Kresl, M., Kapedani, N., Sulce, P., Halimi, H., Malasi, E., Vokopola, E.,Kuęerova, L., ęanga, B., Jareci, E., 2004. Atlas of geothermal resources in Albania. Faculty of Geology and Mining of Tirana University, Tirana.
  • 35. Xhomo, A., Qirici, V., Kodra, B., Pashko, P., Meęo, S., 1991. Tectonic style of the Korab Zone (in Albanian). Buletini i Shkencave Gjeologjike,1: 205-211.
  • 36. Xhomo, A., Kodra, A., Xhafa, Z., Shallo, M., 2002. Geological Map of Albania sc 1:200,000, and the notes. Geology of Albania (in Albanian).
  • 37. Velaj, T., 2001. Evaporites in Albania and their impact on thrusting processes. Journal of the Balkan Geophysical Society, 4: 9-18.
  • 38. Yilmaz, I., 2001. Gypsum/anhydrite: some engineering problems. Bulletin Engineering Geology and Environment, 59: 227-230; https://doi.org/10.1007/s100640000071
Identyfikator YADDA
bwmeta1.element.baztech-db89fb7c-54f4-4c56-9e8f-6cc281eef30e