Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study assessed the effects of vehicle mileage on the floor panel geometry and the upper mounting of the McPherson struts, as well as on the wheel alignment parameters. Geometry changes were determined in cars with the same design parameters, differing only in the type of engine supply system. The cars were van-bodied vehicles with compression ignition engines fuelled with diesel fuel and spark-ignition engines fuelled with LPG. The vehicles differed significantly in the weight distribution on their axles. The study is distinguished by its comprehensive approach to identifying in-service body wear. A detailed analysis covered not only the main causes of changes in body geometry, namely the influence of the vehicles’ mileage and design parameters, but also the effect of identifying the values of changes in the suspension and steering system geometry parameters. The body geometry and wheel alignment testing was carried out at a mileage of approximately 300,000 km. The study determined the relationships between changes in body geometry and wheel alignment. Changes in body geometry were determined by the type of basis point and the type of vehicle under analysis. Major changes in body geometry and wheel alignment were found in diesel-fuelled cars at the front of the vehicles and in LPG-fuelled cars at the rear of the vehicles. The greatest changes in body geometry in both vehicle types were noted within the area of the points associated with the mounting of the front and rear axle suspension system components.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
406--418
Opis fizyczny
Bibliogr. 31 poz., fig., tab.
Twórcy
autor
- Department of Construction, Operation of Vehicles and Machinery, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 11, Olsztyn 10-719, Poland
autor
- Department of Construction, Operation of Vehicles and Machinery, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 11, Olsztyn 10-719, Poland
Bibliografia
- 1. Wang L., Xue X., Zhao Z., Wang Z. The impacts of transportation infrastructure on sustainable development: emerging trends and challenges. International Journal of Environmental Research and Public Health 2018; 15(6): 1172. https://doi.org/10.3390/ijerph15061172.
- 2. Berg C.N., Deichmann U., Liu Y., Selod H. Transport policies and development. World Bank Policy Research Working Paper 2015; 7366. https://doi.org/10.1596/1813-9450-7366.
- 3. Calvo J.A., Álvarez-Caldas C., San Román J.L., Cobo P. Influence of vehicle driving parameters on the noise caused by passenger cars in urban traffic. Transportation Research Part D 2012; 17: 509–513. https://doi.org/10.1016/j.trd.2012.06.002.
- 4. Ferrari P. The effect of the competition between cars and trucks on the evolution of the motorway transport system. Transportation Research Part C 2009; 17: 558–570. https://doi.org/10.1016/j.trc.2009.05.002.
- 5. Kim J., Rasouli S., Timmermans H. Satisfaction and uncertainty in car-sharing decisions: An integration of hybrid choice and random regret-based models. Transportation Research Part A 2016; 95: 13–33. https://doi.org/10.1016/j.tra.2016.11.005.
- 6. Helai H., Hoong Chor C., M. Haque M. Severity of driver injury and vehicle damage in traffic crashes at intersections: A Bayesian hierarchical analysis. Accident Analysis and Prevention 2008; 40: 45–54. https://doi.org/10.1016/j.aap.2007.04.002.
- 7. Barroso A., Giarratana M.S., Pasquini M. Product portfolio performance in new foreign markets: The EU trademark dual system. Research Policy 2019; 48: 11–21. https://doi.org/10.1016/j.respol.2018.07.013.
- 8. Rękas A., Kaczmarek T., Wieczorowski M., Gapiński B., Jakubowicz M., Grochalski K., Kucharski D., Marciniak-Podsadna L. Analysis of tool geometry for the stamping process of large-size car body components using a 3D optical measurement system. Materials 2021; 14(24): 7608. https://doi.org/10.3390/ma14247608.
- 9. Guan J., Fei J., Li W., Jiang X., Wu L., Liu Y., Xi J. Defect classification for specular surfaces based on deflectometry and multi-modal fusion network. Optics and Lasers in Engineering; 163(2023): 107488. https://doi.org/10.1016/j.optlaseng.2023.107488.
- 10. Muñoz A., Mahiques X., Solanes E. J., Martí A., Gracia L., Tornero J. Mixed reality-based user interface for quality control inspection of car body surfaces. Journal of Manufacturing Systems 2019; 53: 75–92. https://doi.org/10.1016/j.jmsy.2019.08.004.
- 11. Dalle Mura M., Dini G. An augmented reality approach for supporting panel alignment in car body assembly. Journal of Manufacturing Systems 2021; 59: 251–260. https://doi.org/10.1016/j.jmsy.2021.03.004.
- 12. Puente Leo F., Kammel S. Inspection of specular and painted surfaces with centralized fusion techniques. Measurement 2006; 39(6): 536–546. https://doi.org/10.1016/j.measurement.2005.12.007.
- 13. Zhou Q., Chen R., Huang B., Xu W., Yu J. DeepInspection: Deep learning based hierarchical network for specular surface inspection. Measurement 2020; 160: 107834. https://doi.org/10.1016/j.measurement.2020.107834.
- 14. Huang H., Li C., Zeng Q. Crash protectiveness to occupant injury and vehicle damage: An investigation on major car brands. Accident Analysis and Prevention 2016; 86: 129–136. https://doi.org/10.1016/j.aap.2015.10.008.
- 15. Duffy J.E. Auto Body Repair Technology. Canada by Nelsin Education. Boston, 2014.
- 16. Gonera J., Vrublevskyi O., Napiórkowski J. Modelling of floorpan wear in passenger vehicles using artificial neural networks. Engineering Failure Analysis 2021; 127: 1–16. https://doi.org/10.1016/j.engfailanal.2021.105482.
- 17. Gonera J., Napiórkowski J. Model for forecasting the geometry of the floor panel of a passenger car during its operation. Eksploatacja i Niezawodność – Maintenance and Reliability 2018; 20 (4): 689–695. https://doi.org/10.17531/ein.2018.4.20.
- 18. Heißing B., Ersoy M. Chassis handbook: Fundamentals, driving dynamics, components, mechatronics, perspectives. Vieweg + Teubner Verlag – Springer Fachmedien Wiesbaden GmbH. Wiesbaden, 2011.
- 19. Ahrens G., Dellmann T., Gies S., Hecht M., Hefazi H., Henke R., Pischinger S., Schaufele R., Tegel O. Applications in mechanical engineering: Transport systems. Springer Science + Business Media. Würzburg, 2009.
- 20. Mizuno D., Suzuki S., Fujita S., Hara N. Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor. Corrosion Science 2014; 83: 217–225. https://doi.org/10.1016/j.corsci.2014.02.020.
- 21. Wallentowitz H. Virtuelle fahrzeugentwicklungnetzwerke als voraussetzungen zur problemlosung. Erfolg in Netzwerken 2002: 85–101. https://doi.org/10.1007/978-3-642-56175-7_6
- 22. Jackowski J., Łęgiewicz J., Wieczorek M. Passenger and derivative cars. WKiŁ. Warszawa, 2011.
- 23. Wallentowitz H. Querund Vertikaldynamik von Fahrzeugen, Vorlesungsumdruck Kraftfahrzeuge 1. FKA-Verlag. Aachen, 1998.
- 24. Gonera J., Napiórkowski J. Analysis of the effect of passenger car design on floor panel wear. Measurement 2023; 220: 1–11. https://doi.org/10.1016/j.measurement.2023.113440.
- 25. Aguilar J. J., Sanz M., Guillomía D., Lope M., Bueno I. Analysis, characterization and accuracy improvement of optical coordinate measurement systems for car body assembly quality control. International Journal Advanced Manufacturing Technology 2006; 30: 1174–1190. https://doi.org/10.1007/s00170-005-0143-5.
- 26. Livesey W. A., Robinson A. The repair of vehicle bodies. Oxford, 2006.
- 27. Gonera J., Napiórkowski J. Analysis of car body and wheel geometry depending on mileage on the wear of tyres in passenger cars. International Journal of Automotive Technology 2021; 22 (1): 253–261. https://doi.org/10.1007/s12239–021–0025–3.
- 28. Xu G., He W., Chen F., Shen H., Li X. Automatic and accurate vision-based measurement of camber and toe-in alignment of vehicle wheel. IEEE Transactions on Instrumentation and Measurement 2022; 71. https://doi.org/10.1109/TIM.2022.3216382.
- 29. Gonera J., Napiórkowski J. An analysis of the active safety of a passenger car body during car use. MATEC Web of Conferences 2018; 182: 01022. https://doi.org/10.1051/matecconf/201818201022.
- 30. Service manual BMW. Bentley Publishers Automotive Reverence. Cambridge, 2020.
- 31. Service manual Mercedes-Benz. Bentley Publishers Automotive Reverence. Cambridge, 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db880f2a-2505-48dd-af83-c701719b34d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.