PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Risk Mapping of Coastal Flooding Areas Due to Tsunami Wave Run-Up Using DAS Model and its Impact on Nekor Bay (Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Al-Hoceima region is threatened by tsunami hazard because of its location in the coastal area of the Mediterranean Sea, besides the shallow seismically active region south of the Alboran Sea. Therefore, the current study presents a novel model to map coastal flooding potential zones due to tsunami wave run-up in Nekor bay using three natural parameters (distance from coastline, altitude and slope) in a geographic information system (GIS) environment. Furthermore, the coastal flooding simulation using 4 scénarios (1, 2, 3, 4m) based on the run-up elevation according to tsunami wave elevation (TWE) literature of the study area is used to confirm the DAS model result, and to estimate the potential impacts. The result of the DAS model revealed that 1 km from the coast to the Nekor plain is the most exposed to the impact of tsunamis generated south of the Alboran Sea. The coastal flooding simulation confirmed the DAS result, and the damage estimation of the urban area and the agriculture was respectively 2 and 98% for run-up 1 m, 3% and 97% for run-up 2m, 4% and 96% for run-up 3m, and for the worst case scenario of 4 m was 3% and 97%. Therefore, the results obtained show that the major potential impact of coastal flooding in Nekor plain is the salinization of agricultural land. Finally, we propose a sustainable solution utilizing a controlled forest along the coast to reduce future tsunami impacts on Nekor bay.
Słowa kluczowe
Twórcy
autor
  • The Department of Earth and Environmental Sciences, The Faculty of Sciences and Technique of Al-Hoceima, The Abdelmalek Essaâdi University, Avenue Khenifra, Tétouan 93000, Morocco
  • The Department of Geology, The Faculty of Sciences and Techniques of Tanger, The Abdelmalek Essaadi University, Avenue Khenifra, Tétouan 93000, Morocco
  • The Department of Earth and Environmental Sciences, The Faculty of Sciences and Technique of Al-Hoceima, The Abdelmalek Essaâdi University, Avenue Khenifra, Tétouan 93000, Morocco
  • The Department of Earth and Environmental Sciences, The Faculty of Sciences and Technique of Al-Hoceima, The Abdelmalek Essaâdi University, Avenue Khenifra, Tétouan 93000, Morocco
  • Laboratory of Water and Environmental Engineering, Al Hoceima National School of Applied Sciences, The Abdelmalek Essaâdi University, Avenue Khenifra, Tétouan 93000, Morocco
  • The Department of Geology, The Faculty of Sciences and Techniques of Tanger, The Abdelmalek Essaadi University, Avenue Khenifra, Tétouan 93000, Morocco
  • The Department of Earth and Environmental Sciences, The Faculty of Sciences and Technique of Al-Hoceima, The Abdelmalek Essaâdi University, Avenue Khenifra, Tétouan 93000, Morocco
Bibliografia
  • 1. Adrian, C. 2009. On the Propagation of Tsunami Waves, with Emphasis on the Tsunami of 2004. Discrete and Continuous Dynamical Systems – Series B, 12(3), 525–37.
  • 2. Álvarez-Gómez, J.A., Aniel-Quiroga I., González M., Otero L. 2011. Tsunami Hazard at the Western Mediterranean Spanish Coast from Seismic Sources. Natural Hazards and Earth System Science, 11(1), 227–240.
  • 3. Álvarez-Gómez, J.A. et al. 2011. Scenarios for Earthquake-Generated Tsunamis on a Complex Tectonic Area of Diffuse Deformation and Low Velocity: The Alboran Sea, Western Mediterranean. Marine Geology, 284(1–4), 55–73. http://dx.doi.org/10.1016/j.margeo.2011.03.008
  • 4. Amarni, N. et al. 2010. Évaluation de La Vulnérabilité Côtière Du Littoral Centre Ouest Algérien (Cherchell), Sous l’Angle de La Géomatique.
  • 5. Amir, L.A. 2014. Tsunami hazard assessment in the alboran sea for the Western coast of Algeria. Journal of Shipping and Ocean Engineering, 4(April), 43–51.
  • 6. Basquin, E., Mercier, D., Creach, A. 2021. Diagnostic Préliminaire de l’Exposition Du Littoral Méditerranéen Du Maroc Face Au Risque de Tsunami, (Jan.).
  • 7. Becu, N. et al. 2017. Participatory simulation to foster social learning on coastal flooding prevention. Environmental Modelling and Software, 98, 1–11.
  • 8. Bernard, E., Titov V. 2015. Evolution of tsunami warning systems and products. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2053).
  • 9. Bilskie, M.V., Hagen, S.C., Medeiros, S.C., Passeri, D.L. 2014. Dynamics of Sea Level Rise and Coastal Flooding on a Changing Landscape. Geophysical Research Letters, 41(3), 927–934.
  • 10.Buforn, E. et al. 2017. The 2016 South Alboran Earthquake (Mw = 6.4): A Reactivation of the Ibero-Maghrebian Region? Tectonophysics, 712–713, 704–715.
  • 11. Cazenave, A., Le Cozannet G. 2014. Sea Level Rise and Its Coastal Impacts. Earth’s Future, 2(2), 15–34.
  • 12. Danielsen, F. et al. 2005. The Asian Tsunami: A Protective Role for Coastal Vegetation. Science, 310(5748), 643.
  • 13. Estrada, F. et al. 2021. Tsunami Generation Potential of a Strike-Slip Fault Tip in the Westernmost Mediterranean. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-021-95729-6.
  • 14. Fajri, Z. et al. 2021. Numerical simulation of tsunami hazards in south atlantic coast: case of the city of Agadir-Morocco: preliminary result. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 46(4/W5-2021): 219–223.
  • 15. Galindo-Zaldivar, J. et al. 2018. Imaging the growth of recent faults: The case of 2016–2017 seismic sequence sea bottom deformation in the Alboran Sea (Western Mediterranean). Tectonics, 37(8), 2513–2530.
  • 16. Ghazali, N.H.M., Awang, N.A., Mahmud, M., Mokhtar, A. 2018. Impact of sea level rise and tsunami on coastal areas of North-West Peninsular Malaysia. Irrigation and Drainage, 67(May), 119–129.
  • 17. Gonzalez, M., Medina R. 1998. Probabilistic Model for Tsunami-Wave Elevation along the Alboran Seacoast. Proceedings of the Coastal Engineering Conference, 2, 1168–1181.
  • 18. Harada, K., Imamura, F. 2005. Effects of coastal forest on tsunami hazard mitigation – A preliminary investigation. Advances in Natural and Technological Hazards Research, 23(Jan.), 279–292.
  • 19. Al Hatrushi S., Al-Buloshi A. 2014. GIS-Based Framework for the Simulation of the Impacts of Sea Level Rise and Coastal Flooding on Oman. Journal of Earth Science & Climatic Change, 5(10).
  • 20. Hauer, M.E. et al. 2021. Assessing Population Exposure to Coastal Flooding Due to Sea Level Rise. Nature Communications, 12(1), 1–9.
  • 21.Jevrejeva, S. et al. 2016. Coastal Sea Level Rise with Warming above 2 °C. Proceedings of the National Academy of Sciences of the United States of America, 113(47), 13342–13347.
  • 22. Kariche, J. et al. 2018. The Al Hoceima earthquake sequence of 1994, 2004 and 2016: Stress transfer and poroelasticity in the Rif and Alboran Sea Region. Geophysical Journal International, 212(1), 42–53.
  • 23. Kathiresan, K., Rajendran N. 2005. Coastal Mangrove Forests Mitigated Tsunami. Estuarine, Coastal and Shelf Science, 65(3), 601–606.
  • 24. Leatherman, S.P., Zhang K., Douglas B.C. 2000. Sea Level Rise Shown to Drive Coastal Erosion. Eos, 81(6), 55–57.
  • 25. Løvholt, F. et al. 2012. Tsunami Hazard and Exposure on the Global Scale. Earth-Science Reviews, 110(1–4), 58–73. http://dx.doi.org/10.1016/j.earscirev.2011.10.002.
  • 26. Mauffret, A., Ammar A., Gorini C., Jabour H. 2007. The Alboran Sea (Western Mediterranean) revisited with a view from the Moroccan Margin. Terra Nova, 19(3), 195–203.
  • 27. Meyyappan, P.L. et al. 2015. Tsunami Wave Impact on Structures. International Journal of Applied Engineering Research, 10(50), 1135–1139.
  • 28. El Moussaoui, S. et al. 2017. Tsunami Hazard and Buildings Vulnerability along the Northern Atlantic Coast of Morocco – the 1755-like Tsunami in Asilah Test-Site. Geoenvironmental Disasters, 4(1).
  • 29. Nandasena, N.A.K., Tanaka N., Tanimoto K. 2008. Tsunami Current Inundation of Ground With Coastal Vegetation Effects: An Initial Step Towards a Natural Solution for Tsunami Amelioration. Journal of Earthquake and Tsunami, 2(2), 157–171.
  • 30. Natarajan, L. et al. 2021. Flood susceptibility analysis in chennai corporation using frequency ratio model. Journal of the Indian Society of Remote Sensing, 49(7), 1533–1543. https://doi.org/10.1007/s12524-021-01331-8.
  • 31. Nicholls, R.J., Cazenave, A. 2010. Sea-Level Rise and Its Impact on Coastal Zones. Science, 328(5985), 1517–1520.
  • 32. Omira, R. et al. 2010. Tsunami vulnerability assessment of Casablanca-Morocco using numerical modelling and GIS tools. Natural Hazards, 54(1), 75–95.
  • 33. Papadopoulos, G.A. et al. 2014. Historical and pre-historical tsunamis in the mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Marine Geology, 354, 81–109. http://dx.doi.org/10.1016/j.margeo.2014.04.014.
  • 34. Papathoma, M., Dominey-Howes D. 2003. Tsunami Vulnerability Assessment and Its Implications for Coastal Hazard Analysis and Disaster Management Planning, Gulf of Corinth, Greece. Natural Hazards and Earth System Science, 3(6), 733–747.
  • 35. Papathoma, M., Dominey-Howes D., Zong Y., Smith D. 2003. Assessing Tsunami Vulnerability, an Example from Herakleio, Crete. Natural Hazards and Earth System Science, 3(5), 377–389.
  • 36. Pethick, J. 2001. Coastal Management and SeaLevel Rise. Catena, 42(2–4), 307–322.
  • 37. Poujol, A. et al. 2014. Active Tectonics of the Northern Rif (Morocco) from Geomorphic and Geochronological Data. Journal of Geodynamics, 77, 70–88. http://dx.doi.org/10.1016/j.jog.2014.01.004
  • 38. Qu, Y., Jevrejeva, S., Jackson, L.P., Moore, J.C. 2019. Coastal Sea Level Rise around the China Seas. Global and Planetary Change, 172, 454–463. https://doi.org/10.1016/j.gloplacha.2018.11.005
  • 39. Röbke, B.R., Vött, A. 2017. The tsunami phenomenon. Progress in Oceanography, 159(Sept.), 296–322. http://dx.doi.org/10.1016/j.pocean.2017.09.003.
  • 40. Rubinato, M., Heyworth, J., Hart, J.. 2020. Protecting Coastlines from Flooding in a Changing Climate: A Preliminary Experimental Study to Investigate a Sustainable Approach. Water (Switzerland), 12(9).
  • 41. Samaras, A.G., Karambas, T.V. 2021. Modelling the Impact of Climate Change on Coastal Flooding: Implications for Coastal Structures Design. Journal of Marine Science and Engineering, 9(9).
  • 42. Seenath, A., Wilson, M., Miller, K. 2016. Hydrodynamic versus GIS Modelling for Coastal Flood Vulnerability Assessment: Which Is Better for Guiding Coastal Management? Ocean and Coastal Management, 120, 99–109. http://dx.doi.org/10.1016/j.ocecoaman.2015.11.019
  • 43. Smith, J.M.K., Cialone, M.A., Wamsley, T.V., McAlpin, T.O. 2010. Potential Impact of Sea Level Rise on Coastal Surges in Southeast Louisiana. Ocean Engineering, 37(1), 37–47. http://dx.doi.org/10.1016/j.oceaneng.2009.07.008
  • 44. Sørensen, M.B. et al. 2012. Probabilistic Tsunami Hazard in the Mediterranean Sea. Journal of Geophysical Research: Solid Earth, 117(1), 1–15.
  • 45. Stich, D. et al. 2020. Slip Partitioning in the 2016 Alboran Sea Earthquake Sequence (Western Mediterranean). Frontiers in Earth Science, 8(Sept.), 1–19.
  • 46. Syamsidik, et al. 2019. Post-Tsunami Survey of the 28 September 2018 Tsunami near Palu Bay in Central Sulawesi, Indonesia: Impacts and Challenges to Coastal Communities. International Journal of Disaster Risk Reduction, 38(March), 101229. https://doi.org/10.1016/j.ijdrr.2019.101229
  • 47. Synolakis, C.E. 1987. The Runup of Solitary Waves. Journal of Fluid Mechanics, 185(May), 523–545.
  • 48. Szczuciński, W. et al. 2006. Environmental and Geological Impacts of the 26 December 2004 Tsunami in Coastal Zone of Thailand - Overview of Short and Long-Term Effects. Polish Journal of Environmental Studies, 15(5), 793–810.
  • 49. El Talibi, H. et al. 2016. New Sedimentary and Geomorphic Evidence of Tsunami Flooding Related to an Older Events along the Tangier-Asilah Coastal Plain, Morocco. Geoenvironmental Disasters, 3(1). http://dx.doi.org/10.1186/s40677-016-0049-6
  • 50. Vargas, G. et al. 2011. Coastal uplift and tsunami effects associated to the 2010 Mw8.8 Maule earthquake in Central Chile. Andean Geology, 38(1), 219–238.
  • 51. Wang Y. and Marsooli R. 2021. Dynamic modeling of sea-level rise impact on coastal flood hazard and vulnerability in New York City’s built environment. Coastal Engineering, 169(Aug.), 103980. https://doi.org/10.1016/j.coastaleng.2021.103980.
  • 52. Ward, P.J. et al. 2011. Coastal Inundation and Damage Exposure Estimation: A Case Study for Jakarta. Natural Hazards, 56(3), 899–916.
  • 53. Werner, A.D., Simmons, C.T. 2009. Impact of SeaLevel Rise on Sea Water Intrusion in Coastal Aquifers. Ground Water, 47(2), 197–204.
  • 54. White, N.J., Church J.A., Gregory J.M. 2005. Coastal and global averaged sea level rise for 1950 to 2000. Geophysical Research Letters, 32(1), 1–4.
  • 55. Xie, P., Chu V.H. 2020. The Impact of Tsunami Wave Force on Elevated Coastal Structures. Coastal Engineering, 162(Sept.), 103777. https://doi.org/10.1016/j.coastaleng.2020.103777
  • 56. Yalciner, A.C. et al. 2011. Field Survey on the Coastal Impacts of March 11, 2011 Great East Japan Tsunami. Seismic Protection of Cultural Heritage - The World Council of Civil Engineers (WCCE), the European Council of Civil Engineers (ECCE) and the Turkish Chamber of Civil Engineers (TCCE) Joint Conference 2011, 123–40.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db86952a-d74b-4f65-b5ee-1d82e30c1bee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.