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Abstract 
Controllers based on linear matrix inequalities (LMI) and model predictive control (MPC) both use 
optimization methods; there are however significant differences between them. In case of LMI controllers, 
optimization is carried out during controller synthesis, because LMI’s are an optimization tool that requires 
a linear programming problem being solved. With MPC controllers, however, optimization methods are not 
used as much in controller synthesis as in controller algorithm operation, to determine optimal control signal 
values based on the found minimum of the criteria function. A square function is used with boundaries from 
above and below, which requires a square programming problem, with boundaries for decision variables, 
being solved. In this paper controller synthesis methods using LMI and MPC are shown, with a focus on the 
steps that need to be performed, and a comparison of both methods. 

 
 

Introduction 
Vessel movement control is becoming an in-

creasingly important part of modern automation 
systems installed on ships. Increasingly, multivari-
able controllers are used, which are a completely 
different standard compared to the widely used 
monovariable controllers (used for a ship’s course). 
There are many types of multivariable controllers 
used in marine automation systems and many 
methods for their synthesis. This paper focuses on 
comparing controller synthesis using linear matrix 
inequalities (LMI) and model predictive control 
(MPC) methods. The most frequently quoted publi-
cations about LMI are (Boyd et al., 1994) and 
(Weiland & Scherer, 2005). In Poland, two of the 
first papers on control theory with LMI were “Con-
troller synthesis, selected classical and optimization 
methods” by Koziński (Koziński, 2004) and 
“Analysis and synthesis of multidimensional sys-
tem classes using linear matrix inequality methods” 
by Paszke (Paszke, 2005). MPC is not one, specific, 
clearly defined algorithm. It is more of an expanded 
strategy of optimal (or suboptimal) control used in 

many branches of industry. Controllers based on 
predictive algorithms were first used, in practice, in 
the chemical and petrochemical industry (Xi, Li & 
Lin, 2013), where controlled processes are usually 
slow changing. It is a control strategy that allows 
implementing boundaries to both input and control 
variables. MPC is a control method based on con-
trolling object (or process) models, and using them 
to predict future object behaviour based on deter-
mined control signals and known starting condi-
tions. Archetypes for this now growing control 
strategy were the publications (Clarke, Mohtadi & 
Tuffs, 1987a; 1987b). Our current paper presents 
the specific stages of controller synthesis using 
LMI and MPC methods, with a summary that 
highlights the difficulties and benefits of both 
methods. 

Method of controller synthesis using linear 
matrix inequalities 

The method of LMI is one of a number of meth-
ods of convex optimization used for controller de-
sign. LMI conditions create a set of boundaries called 
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a convex set; each of these boundaries is described by 
an inequality that affects system dynamics. LMI are 
used for: 
 Analysis of control systems, as in stability and 

quality control; 
 Controller synthesis with various controlled 

object connection possibilities e.g. serial, paral-
lel or static state space controllers. 
Controller synthesis using LMI requires several 

steps, which are described below and shown in 
Figure 2: 
1. Identification of the linear controlled object 

model. 
2. Controller synthesis is divided into the follow-

ing sub-steps: 
a) Finding a symmetric positive definite matrix 

P, also known as the feasibility problem; 
b) User defining boundaries for the convex set, 

placed in the left half-plane of complex vari-
able plane s; 

c) Calculation of H∞ standard; 
d) Calculation of H2 standard. 

3. Minimization of objective function, which 
means selecting values of H∞ and H2 standards 
so that a weighted sum can be calculated. 
After identifying the linear controlled object 

model, which is done by analyzing the relations 
between the input and output signals, state equa-
tions are formed. Figure 1 shows a standard control 
system structure used for optimization (Boyd et al., 
1994; Weiland & Scherer, 2005).   

Controller state space equations: 
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where: x – dependent variables vector, state vector; 
z, y – output value vectors; u, w – response vectors, 
input function vectors; A – state matrix; Bw, Bu – 
control matrix for w and u signals; Cz, Cy, Cz2, Cz∞ – 
output matrix for z, z2, z∞ and y signals; Dzw, Dzu, 
Dyw, Dyu, Dz∞w, Dz2w, Dz∞u, Dz2u – transmission 
matrix for specific signals; and where it is assumed 
that Dyu, Dyw, Dz2w = 0, which means that the output 
signals y and z2 are not directly related to the re-
sponse signal u. The identified model of the con-
trolled object is defined as linear and stationary 
with the transmittance of a closed loop system G(s)2 
for the H2 standard, which describes the relation 
between input signal w and output signal z2; and 

a second transmittance of a closed loop system 
G(s)∞ for the standard H∞, which describes the 
relation between input signal w and output signal 
z∞. 

 
Figure 1. Control structure for LMI 

The following state space equations describe the 
controller: 
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where: xc – controller state vector; y – measured 
signal vector; u – control signal vector; Ac, Bc, Cc, 
Dc – controller matrices. 

A closed loop system, where w is the input sig-
nal and z is the output signal, is described by the 
state equations below. The specific matrices of the 
closed loop system are as follows: 
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For clarity of formulas the following standard 
designations are used: 

 Acl = A, Bcl = B, Cz, Cz2, Cz∞ =  
 = C, Dzw, Dzu, Dyw, Dyu, Dz∞w, Dz2w, Dz∞u, Dz2u = D. 
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After defining state equalities for a closed loop 
system, the following goal of control synthesis can 
be formulated (Koziński, 2004): 

For a given controlled object and a given 
transmittance standard of a closed loop system, 
from all controllers for which the closed loop 
system is stable, find a controller that will minimize 
the transmittance standard of a closed loop system 
between “w” and “z” signals. 

The first step is finding an answer to the ques-
tion of whether there exists a solution x to the 
following inequality: 

 0)( xA  

where: the symbol A   0 means that matrix A 
is symmetric A  Rnxn and for every vector x  Rn 
it is true that xT Ax > 0, which is called positive 
determination, which means, if the eigenvalues of 
matrix A(x) are negative and if they are placed in 
the left half-plane of complex variable plane s. 
Additionally, a positively symmetrical matrix 
(P = PT 0 ) must be found for an inequality 
known as the Lyapunov inequality (ATP + PA < 0) 
which is closely related, by matrix A, to the con-
trolled object described by the state equalities. 
Fulfilling this condition is the first LMI problem, 
and is called the feasibility problem. 

The second step requires the user to define 
a bounded convex set area of solutions placed in the 
left half-plane of complex variable plane s, in order 
to determine dynamic parameters of the controlled 
object. The shape and parameters of the convex set 
area are empirically determined by the user 
(Rybczak, 2014). 

The third step is the approximation of the H∞ 
standard. A positively symmetrical matrix P must 
be found which fulfils the condition below: 
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The user must empirically determine the value 
of γ∞ coefficient which fulfils the inequality 

 22)( 
 sG  (6) 

The synthesis method of control is shown below 
in Figure 2. 

The user must look for the smallest difference 
between the output response signal and the input 
signal, which relates to the control error z∞, formu-
lated as: z = w – z, where: w – input signal; z – 
output response signal. 

 
Figure 2. Synthesis method of control using LMI graph 

The fourth step is the calculation of the H2 stan-
dard. Positively symmetrical matrices P and Q = QT 
must be found that fulfil the condition below: 
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The user must empirically determine the value 
of the γ2 coefficient needed to minimize the value 
of the control signal. During simulations, an ine-
quality must be fulfilled for the γ2 coefficient as 
shown below: 

 222
2 )(,)(   QTrsG  (8) 

It means that the trace of matrix Q cannot  
exceed the upper boundary γ2 of the H2 standard. 

The final step is the minimization of the above 
defined standards. The minimization of the H2 
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standard, which is G(s)2 for transmittance G(s)2, 
and the H∞ standard, which is G(s) for transmit-
tance G(s)∞, allows a weighed sum of both stan-
dards in the form of the J coefficient described 
below to be formulated: 

 22
2 
 HHJ   (9) 

where coefficients  > 0 and  > 0 are empiri-
cally determined by the user. In this paper, it was 
agreed that  = 1,  = 1, which might cause the 
results to be more conservative.  

After all the steps have been performed control-
ler synthesis is finished. The above steps belong to 
a general scheme of controller set point selection 
for the designed controller. Full controller synthesis 
depends on: 
 Controller to controlled object configuration, 

which impacts controlled object state equalities; 
 Taking into consideration the input and output 

signals of the system. 

Method of controller synthesis using model 
predictive control 

Predictive control is an advanced optimal con-
trol strategy created in 1987 by Clarke and others 
(Clarke, Mohtadi & Tuffs, 1987a; 1987b). It is 
based on finding the values of future control signals 
that will minimise the criteria function given below: 
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where:  
 (n), (n) – input and output signal weight increase 

vectors;  
y(n + k) – predicted output signal values for (n + k) 

time step; 
w(n + k) – predicted reference trajectory for (n + k) 

time step; 
u(n + k) – predicted control signal deviations for 

(n + k) time step. 
The above quality control criteria, which are 

minimised in every time step of the algorithm 
operation, can be modified according to the re-
quirements of the controlled object. In case of MPC 
controllers, there is a possibility to control both 
mono and multivariable objects. With multivariable 
objects, predicted values are converted to matrices 
of predicted values according to the scheme below: 
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Controller synthesis using MPC requires several 
steps which are described below and shown in 
Figure 3: 
1. Controller structure selection – defining control, 

output and reference signals. 
2. Creating a linear controlled object model or 

linearization of a nonlinear object model close to 
the working point – which in case of nonlinear 
models will have the same structure as the con-
troller. 

3. Selecting boundaries of input signals and change 
speed of control signals. 

4. Selecting prediction and control horizon lengths. 
5. Selecting the control signal weight increase and 

output signal weights. 

 
Figure 3. Synthesis method of controller using MPC graph 

In case of a predictive controller, as in all con-
troller design, it is necessary to precisely define its 
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tasks. This is done by determining control signal 
vectors u(n), output signal vectors y(n) and discrete 
state space variables x(n). Vector elements are 
discrete because MPC controllers are discrete. 
Additionally, in the case of nonlinear controlled 
objects it is necessary to determine a working point 
in the vicinity of which the controller will work. It 
means that the mathematical model of a nonlinear 
controlled object must be linearized. 

The predictive controller algorithm is based on 
the minimization of the target function (equation 
number J =...) in the space of the known prediction 
and control horizons. To estimate the output signals 
yest(n + k) required to achieve the target function 
value and to perform the optimization to determine 
control signal value vector (matrix), it is necessary 
to use the controlled object model that is shown in 
Figure 3. 

Due to placing the model inside the controller 
block, it is necessary to adjust its structure to the 
controller tasks. Input signals must have the same 
form as control signals (u(n)) determined in 
a closed loop control system, while the object 
output signals should have the same form as the 
estimated output signals (yest(n)). In order to assure 
quick calculations and to find a global optimal 
solution in real life (industrial) applications, a linear 
(or linearized in the vicinity of the working point) 
model is used.  

The creation or linearization of a controlled ob-
ject model is a complex process, in which it is 
possible to use different methods. The most popular 
and most frequently used is model identification in 
state space (Brunton, Dawson & Rowley, 2014), 
which is described by the equations below: 
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where: A, B, C – state, control and output matrices, 
x(n) – state vector, y(n) – output vector, u(n) – 
control vector in discrete time steps n. 

Based on the above, a discrete model in state 
space is achieved. Before it can be included into the 
controller structure, model verification is necessary. 
Precisely how the model predicts output signals 
yest(n) based on future control signals u(n – k), 
output signals y(n – k) and current control signals 
u(n) must be checked. Additionally, model stability 
must be checked, because only a stable predictive 
model allows synthesis of a stable controller. Fi-
nally, a residual analysis is done and a check car-
ried out as to whether the model will work correctly 
regardless of input and output signal combinations 
(so-called model independence). A model that 
fulfils the above conditions can be the basis for 
further predictive controller synthesis. 

Predictive control, being an advanced variant of 
optimal control, gives the possibility to include 
boundaries for control signal speed change 
(u(n) = u(n + 1) – u(n)) as well as control signal 
(u(n)) and output signal (y(n)) values. As such, it is 
a case of square optimization with boundaries. 
According to (Kerrigan & Maciejowski, 1999) 
a minimum of the function must be found (10) with 
the boundaries below: 
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where: Vmin;max, Umin;max, Ymin;max – numerical values 
of boundaries. 

The most frequently used method of square  
optimization is the Newton method, which allows 
for a quick solution. This method can be used 
because the boundaries of a MPC controller are 
from the top and bottom. 

 
Figure 4. General structure of MPC controller 
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In predictive control two time frames are con-
sidered: the prediction horizon and the control 
horizon. The prediction horizon is a time frame 
from the present time (n) to time step (n + k) in 
which the final value of output signal yest(n + k) is 
estimated. The control horizon, on the other hand, 
is a time frame in which the algorithm takes into 
account different values of predicted output signals 
u(n). In the time between the end of control horizon 
and the end of prediction horizon, to minimise the 
required calculations, it is assumed that the control 
signal is constant and equal to the last value of the 
control signal in the control horizon, as shown in 
Figure 5. 

 
Figure 5. Predictive controller concept 

The selected lengths of both horizons impact the 
stability, robustness to external interference and the 
working speed of the closed loop control system. It 
is found that the longer the prediction horizon, the 
better the controller performance. It decreases 
oscillations in output signal (Kerrigan & Macie-
jowski, 1999), but significantly slows down con-
troller operation due to the increased size of the 
vectors and matrices used in the target function. In 
the predictive control of objects with large inertia 
and slow dynamics, the prediction horizon needs to 
be increased to include non-minimum phase behav-
iour of the controlled object. In the control of 
nonlinear objects with large inertia, such as ships, 
the prediction horizon needs to be longer than the 
time required to achieve turning at the maximum 
swing of the thruster (e.g. rudder) and with the 
longitudinal speed matching the object working 
point. Shortening the prediction horizon signifi-
cantly increases robustness to object parameter 
changes and external interference (Miller, 2014). 
Thus the prediction horizon should be as short as 
possible, but long enough to allow stable controller 
operation. 

The control horizon length should match the 
prediction horizon length. Its value is determined 
by iterations to be as small as possible, but long 

enough to allow stable and quick controller opera-
tion. The pole placement needs to be checked for 
synthesized system transmittance and evaluated if 
they all fit inside a singular circle. While perform-
ing simulations of closed loop control systems, 
attention must be paid if there are no oscillations in 
output signal and if the system is not brought to 
stability limit after some time of operation, which is 
frequently the case with incorrectly selected hori-
zon lengths.  

The final parameters that need to be selected in 
controller synthesis are weights  (n), (n) (10). 
Correct weight selection has a significant influence 
on control performance and system stability. The 
weight coefficient (n) determines the penalty for 
control signal change, smoothes it out and mini-
mises its step changes. In case its value drops to 0, 
boundaries to control signals are not considered 
anymore. Increasing this coefficient decreases 
overshoot and increases the response time. The 
function of coefficient  (n) determines the penalty 
for control error between the output signal and 
setpoint value and ensures that the boundaries of 
the output signals are not violated. The larger the 
value of this coefficient, the smaller the probability 
of offset occurrence. When selecting values of  (n) 
and (n) coefficients, values ensuring closed loop 
system stability must be selected, and in the next 
step they must be modified by iterations and their 
influence on system operation observed. 

In multidimensional systems, instead of single 
coefficients, coefficient matrices are used for input 
signals (n) and control signals (n) that have the 
form below: 
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These are an array of coefficients for specific 
channels and perform the exact same functions as 
the  (n) and (n) coefficients in monovariable 
systems. Both (n) and (n) are diagonal matrices 
and must be positively definite. It is possible to 
observe significant variances between specific 
matrix elements, which are caused by differences in 
the significance of specific controlled variables as 
well as disproportions between output signal values 
and the range of their changes. For example, if the 
system response to the first input signal is signifi-
cantly slower than that to other input signals, then 
the value of the 1 coefficient should be increased 
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compared to the other ones (Kerrigan & Macie-
jowski, 1999; Miller, 2014). 

The above method is a general scheme for pre-
dictive controller synthesis and simulating its 
operation in a closed loop system. For system 
operation, verification closed loop stability must be 
checked along with proper system operation. 

Conclusions 
The main goal of this paper was to describe 

steps of controller synthesis using LMI and MPC 
methods. 

The LMI method, shown in Figure 1, includes 
four groups of conditions that have to be met in 
order to correctly specify the optimization goal. 
This includes the correct identification of the linear 
controlled object model which is a basis for the 
state equations formulation. The following stages 
are related to the control and measurement non-
singularity. 

Predictive controller synthesis needs proper  
linear model identification, with a structure which 
is in accordance with the control and output signals 
of the future controller. A stable model, which 
adequately projects object behaviour, is essential 
for producing a stable predictive control system. 
Stages of predictive controller synthesis, include 
iteration and the empiric determination of the 
remaining controller parameters, need to be fol-
lowed. This means that MPC controller synthesis is 
based on multiple modifications of parameters and 
the verification of system operation by simulations, 
as with LMI controller synthesis. Another common 
feature of both methods, apart from being based on 
a linear controlled object model, is the need to 
solve the feasibility problem. 

Predictive controller synthesis is based on the 
knowledge and experience of the designer. There 
are however tools that assist this task. One of these 
is the model predictive toolbox for Matlab, which 
allows for the determination of the controller matrix 
in state space, based on declared parameters, and 
for the checking of the correctness of controller 
operation with freely selected criteria functions. 
Using this tool makes the synthesis process a lot 
easier for the designer, because it automates 
mathematical calculations using predefined func-
tions and speeds up and simplifies the iteration 
parameter adjustment of MPC. 

Predictive controllers synthesized with the 
method described above are stable, and behave 
robustly when slight changes of controlled object 
parameters and interference (e.g. wind) occur. An 
additional benefit is the possibility to include 

control and output signal boundaries and control 
signal change speed directly in the controller algo-
rithm, which is not the case for LMI controllers.  

Both MPC and LMI controllers are based on op-
timization methods, but they are included in differ-
ent stages of controller design. In case of LMI 
controllers, linear optimization is used during 
controller synthesis. Then, during controller opera-
tion, earlier synthesized systems with fixed parame-
ters are used. In MPC controllers, however, non-
linear (square) optimization with boundaries is 
used, which is executed in every step of the algo-
rithm operation. This means that a controller using 
a predictive algorithm requires a lot more calcula-
tion capacity than an LMI controller. Furthermore, 
an MPC controller for the same controlled object 
has a significantly larger dimension than an LMI 
controller. However, this means that the possibili-
ties to fine-tune the MPC controller to specific 
system requirements are larger than with an LMI 
controller. 
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