PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rola archeonów w biologicznym rozkładzie węglowodorów

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The role of Archaea in hydrocarbon biodegradation
Języki publikacji
PL
Abstrakty
PL
Archeony są grupą mikroorganizmów opisanych po raz pierwszy przez Carla Woese’a w 1977 roku. Od tego czasu nastąpił duży postęp w badaniach nad tymi organizmami. Wciąż jednak pozostają one słabo poznane, gdyż przedstawicieli wielu nowo odkrytych linii filogenetycznych Archaea nie udaje się wyhodować w warunkach laboratoryjnych. Archeony stanowią istotny element mikrobioty zasiedlającej większość morskich i lądowych ekosystemów (również środowisk skrajnych) oraz pełnią ważną rolę w obiegu węgla, azotu i siarki. Drobnoustroje te występują również w miejscach zanieczyszczonych węglowodorami (np. skażone gleby, naturalne wycieki ropy naftowej i gazu), będąc zaangażowane w transformacje tych związków. Organizmy te biorą udział w przemianach tlenowych i beztlenowych, mianowicie w: (1) metanogennej degradacji węglowodorów, (2) beztlenowym utlenianiu metanu, (3) beztlenowym rozkładzie wyższych węglowodorów alifatycznych i aromatycznych oraz (4) tlenowych przemianach obu wymienionych grup substancji. W procesy te zaangażowane są odmienne grupy archeonów, jednakże głównie Euryarchaeota wykazują zdolności metaboliczne umożliwiające udział w każdym z wymienionych obszarów transformacji. Coraz większa liczba doniesień wskazuje, że najprawdopodobniej omawiany potencjał metaboliczny występuje również poza taksonem Euryarchaeota. Determinanty genetyczne związane z beztlenowym metabolizmem n-alkanów zostały wykryte w genomach przypisanych do mikroorganizmów z supertypów Asgard i TACK. Obecnie istnieje silna potrzeba, aby poszerzyć wiedzę dotyczącą archeonów zaangażowanych w biotransformacje węglowodorów; szczególna uwaga powinna zostać skierowana na mechanizmy degradacji wspomnianych związków oraz na genetyczne i enzymatyczne podstawy tych przemian. W niniejszym artykule przedstawiono najnowszą wiedzę na temat archeonów biorących udział w przemianach węglowodorów.
EN
Archaea constitute a microbial group described for the first time by Carl Woese in 1977. Since then, great progress has been made with regard to understanding of Archaea; this group, however, still remains poorly known since the representatives of many novel phylogenetic, archaeal lineages cannot be cultivated under laboratory conditions. These organisms are important members of microbiota occurring in the majority of marine and terrestrial ecosystems (including extreme ones) and play a key role in global cycles of carbon, nitrogen and sulfur. Archaea are also present at sites polluted with hydrocarbons (such as oil-contaminated soils, natural oil seeps, cold seeps) and are involved in hydrocarbon transformation. They take part in both aerobic and anaerobic conversions, namely: (1) methanogenic hydrocarbon degradation, (2) anaerobic methane oxidation, (3) anaerobic degradation of higher aliphatic hydrocarbons and aromatic compounds, and (4) aerobic transformations of these substances. Various archaeal groups possess the necessary metabolic potential; however, mainly the microorganisms belonging to Euryarchaeota reveal the metabolic capabilities to participate in each of these four areas of transformation. The increasing number of papers indicates that this potential also occurs in taxa other than Euryarchaeota. The genetic determinants associated with anaerobic oxidation of n-alkanes were found in the genomes belonging to Asgard and TACK superphyla. There is an urgent need to expand our current knowledge of Archaea involved in hydrocarbon biotransformation, especially in the area of degradation mechanisms, genetic and enzymatic background of these conversions. The article presents a review of the recent knowledge on Archaea capable of metabolizing hydrocarbons.
Czasopismo
Rocznik
Strony
407--421
Opis fizyczny
Bibliogr. 79 poz., tab., wykr., wz.
Twórcy
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
Bibliografia
  • Adam P., Borrel G., Brochier-Armanet C., Gribaldo S., 2017. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME Journal, 11: 2407–2425. DOI:10.1038/ismej.2017.122.
  • Al-Mailem D.M., Sorkhoh N.A., Al-Awadhi H., Eliyas M., Radwan S.S., 2010. Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles, 14: 321–328. DOI: 10.1007/s00792-010-0312-9.
  • Aromokeye D.A., Kulkarni A.C., Elvert M., Wegener G., Henkel S., Coffinet S., Eickhorst T., Oni O.E., Richter-Heitmann T., Schnakenberg A., Taubner H., Wunder L., Yin X., Zhu Q., Hinrichs K.-U., Kasten S., Friedrich M.W., 2020. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments. Frontiers in Microbiology, 10: 3041. DOI: 10.3389/fmicb.2019.03041.
  • Baker B.J., Banfield J.F., 2003. Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44: 139–152. DOI:10.1016/S0168-6496(03)00028-X.
  • Bertrand J.C., Almallah M., Acquaviva M., Mille G., 1990. Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Letters in Applied Microbiology, 11: 260–263. DOI:10.1111/j.1472-765X.1990.tb00176.x.
  • Bhattarai S., Cassarini C., Gonzalez-Gil G., Egger M., Slomp C.P., Zhang Y., Esposito G., Lens P.N.L., 2017. Anaerobic methane-oxidizing microbial community in a coastal marine sediment: anaerobic methanotrophy dominated by ANME-3. Microbial Ecology, 74: 608–622. DOI: 10.1007/s00248-017-0978-y.
  • Bhattarai S., Cassarini C., Lens P.N.L., 2019. Physiology and distribution of archaeal methanotrophs that coupe anaerobic oxidation of methane with sulfate reduction. Microbiology and nMolecular Biology Reviews, 83: e00074-18. DOI: 10.1128/MMBR.00074-18.
  • Bonfá M.R.L., Grossman M.J., Mellado E., Durrant L.R., 2011. Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere, 84: 1671–1676. DOI: 10.1016/j.chemosphere.2011.05.005.
  • Cai C., Leu A.O., Xie G.J., Guo J., Feng Y., Zhao J.X., Tyson G.W., Yuan Z., Shihu H., 2018. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME Journal,12: 1929–1939. DOI: 10.1038/s41396-018-0109-x.
  • Canganella F., Jones W.J., Gambacorta A., Antranikian G., 1998. Thermococcus guaymasensis sp. nov., and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. International Journal of Systematic and Evolutionary Microbiology, 48: 1181–1185.
  • Cassarini C., Zhang Y., Lens P.N.L., 2019. Pressure selects dominant anaerobic methanotrophic phylotype and sulfate reducing bacteria in coastal marine lake Grevelinge sediment. Frontiers in Environmental Science, 6: 162. DOI: 10.3389/fenvs.2018.00162.
  • Chen S.C., Musat N., Lechtenfeld O.J., Pascke H., Schmidt M., Said N., Popp D., Calabrese F., Stryhanyuk H., Jaekel U., Zhu Y.G., Joye S.B., Richnow H.H., Widdel F., Musat F., 2019. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature, 568: 108–111. DOI: 10.1038/s41586-019-1063-0.
  • De Anda V., Chen L.X., Dombrowski N., Hua Z.S., Jiang H.C., Banfield J.F., Li W.J., Baker B.J., 2021. Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways. Nature Communications, 12: 2404. DOI: 10.1038/s41467-021-22736-6.
  • Djeridi I., Militon C., Grossi V., Cuny P., 2013. Evidence of surfactant production by the haloarchaeon Haloferax sp. MSNC14 in hydrocarbon-containing media. Extremophiles, 17: 669–675. DOI: 10.1007/s00792-013-0550-8.
  • Dolfing J., Larter S.R., Head I.M., 2008. Thermodynamic constraints on methanogenic crude oil biodegradation. ISME Journal, 2:442–452. DOI: 10.1038/ismej.2007.111.
  • Dombrowski N., Seitz K.W., Teske A.P., Baker B.J., 2017. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome, 5:106. DOI: 10.1186/s40168-017-0322-2.
  • Dong X., Greening C., Rattray J.E., Chakraborty A., Chuvochina M., Mayumi D., Dolfing J., Li C., Brooks J.M., Bernard B.B., GrovesR.A., Lewis I.A., Hubert C.R.J., 2019. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nature Communications, 10: 1816. DOI:10.1038/s41467-019-09747-0.
  • Doolittle W.F., 2020. Evolution: two domains of life or three? Current Biology, 30: R177–R179. DOI: 10.1016/j.cub.2020.01.010.
  • Duarte C.M., Røstad A., Michoud G., Barozzi A., Merlino G., Delgado-Huertas A., Hession B.C., Mallon F.L., Afifi A.M., Daffonchio D., 2020. Discovery of Afifi, the shallowest and southernmost brine pool reported in the Red Sea. Scientific Reports,10: 910. DOI: 10.1038/s41598-020-57416-w.
  • Erdoğmuş S.F., Mutlu B., Korcan S.E., Güven K., Konuk M., 2013. Aromatic hydrocarbon degradation by halophilic Archaea isolated from Çamaltı Saltern, Turkey. Water, Air, and Soil Pollution, 224:1449. DOI: 10.1007/s11270-013-1449-9.
  • Ettwig K.F., Zhu B., Speth D., Keltjens J.T., Jetten M.S.M., Kartal B.,2016. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proceedings of the National Academy of Sciences USA,113: 12792–12796. DOI: 10.1073/pnas.1609534113.
  • Farag I.F., Biddle J.F., Zhao R., Martino A.J., House C.H., Leon-ZayasR.I., 2020. Metabolic potentials of archaeal lineages resolved from metagenomes of deep Costa Rica sediments. ISME Journal, 14:1345–1358. DOI: 10.1038/s41396-020-0615-5.
  • Fox G.F., Magrum L.J., Balch W.E., Wolfe R.S., Woese C.R., 1977. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proceedings of the National Academy of Sciences USA, 74: 4537–4541. DOI: 10.1073/pnas.74.10.4537.
  • Froelich P.N., Klinkhammer G.P., Bender M.L., Luedtke N.A., Heath G.R., Cullen D., Dauphin P., Hammond D., Hartman B., Maynard V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43(7): 1075–1090. DOI:10.1016/0016-7037(79)90095-4.
  • Giudice A.L., Conte A., Papale M., Rizzo C., Azzaro M., Guglielmin M.,2021. Prokaryotic diversity and metabolically active communities in brines from two perennially ice-covered Antarctic lakes. Astrobiology, 21: 551–565. DOI: 10.1089/ast.2020.2238.
  • Hahn C.J., Laso-Pérez R., Vulcano F., Vaziourakis K.-M., Stokke R., Steen I.H., Teske A., Boetius A., Liebeke M., Amann R., Knittel K.,
  • Wegener G., 2020. “Candidatus Ethanoperedens”, a thermophilic genus of Archaea mediating the anaerobic oxidation of ethane. mBio, 11(2). DOI: 10.1128/mBio.00600-20.
  • Head I.M., Jones D.M., Larter S.R., 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature, 426: 344–352. DOI: 10.1038/nature02134.
  • Holmes D.E., Risso C., Smith J.A., Lovley D.R., 2011. Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Applied and Environmental Microbiology, 77(17)5926–5933. DOI: 10.1128/AEM.05452-11.
  • Jiménez N., Morris B.E.L., Cai M., Gründger F., Yao J., Richnow H.H.,
  • Krüger M., 2012. Evidence for in situ methanogenic oil degradation in the Dang oil field. Organic Geochemistry, 52: 44–54. DOI: 10.1016/j.orggeochem.2012.08.009.
  • Khelifi N., Ali O.A., Roche P., Grossi V., Brochier-Armanet C., Valette O., Ollivier B., Dolla A., Hirschler-Réa A., 2014. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus. ISME Journal, 8: 2153–2166.
  • Khemili-Talbi S., Kebbouche-Gana S., Akmoussi-Toumi S., Angar Y., Gana M.L., 2015. Isolation of an extremely halophilic archaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles, 19:1109–1120. DOI: 10.1007/s00792-015-0783-9.
  • Knittel K., Wegener G., Boetius A., 2018. Anaerobic methane oxidizers. [W:] McGenity T.J. (ed.). Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology. Handbook of hydrocarbon and lipid microbiology. Springer, Cham: 1–15. DOI: 10.1007/978-3-319-60063-5_7-1.
  • Korzhenkov A.A., Toshchakov S.V., Bargiela R., Gibbard H., Ferrer M., Teplyuk A.V., Jones D.L., Kublanov I.L., Golyshin P.N., Golyshin O.V., 2019. Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity. Microbiome, 7: 11. DOI: 10.1186/s40168-019-0623-8.
  • Kumar S., Zhou J., Li M., Zhao D., 2020. Insights into the metabolism pathway and functional genes of long-chain aliphatic alkane degradation in haloarchaea. Extremophiles, 24: 475–483. DOI:10.1007/s00792-020-01167-z.
  • Kulichevskaya I.S., Milekhina E.I., Borzenkov I.A., Zvyagintseva I.S., Belyaev S.S., 1992. Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Microbiology, 60: 596–601.
  • Laso-Pérez R., Wegener G., Knittel K., Widdel F., Harding K.J., Krukenberg V., Meier D.V., Richter M., Tegetmeyer H.E., Riedel D., Richnow H.H., Adrian L., Reemtsma T., Lechtenfeld O.J., Musat F., 2016. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature, 539: 396–401. DOI:10.1038/nature20152
  • Laso-Pérez R., Hahn C., van Vliet D.M., Tegetmeyer H.E., Schubotz F.,
  • Smit N.T., Pape T., Sahling H., Bohrmann G., Boetius A., Knittel K., Wegener G., 2019. Anaerobic degradation of non-methane alkanes by “Candidatus Methanoliparia” in hydrocarbon seeps of the Gulf of Mexico. mBio, 10: e01814-19. DOI: 10.1128/mBio.01814-19.
  • Lee J.W., Kwon K.K., Bahk J.J., Lee D.H., Lee H.S., Kang S.G., Lee J.H., 2016. Metagenomic analysis reveals the contribution of anaerobic methanotroph-1b in the oxidation of methane at the Ulleung Basin, East Sea of Korea. Journal of Microbiology, 54: 814–822. DOI: 10.1007/s12275-016-6379-y.
  • Lee D.-H., Kim J.-H., Lee Y.-M., Stadnitskaia A., Jin Y.K., Niemann H., Kim Y.-G., Shin K.-H., 2018. Biogeochemical evidence of anaerobic methane oxidation on active submarine mud volcanoes on the continental slope of the Canadian Beaufort Sea. Biogeosciences,15: 7419–7433. DOI: 10.5194/bg-15-7419-2018.
  • Leu A.O., Cai C., McIlroy S.J., Southam G., Orphan V.J., Yuan Z., Hu S., Tyson G.W., 2020. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME Journal, 14: 1030–1041. DOI: 10.1038/s41396-020-0590-x.
  • Li J., Li L., Bai S., Ta K., Xu H., Chen S., Pan J., Li M., Du M., Peng X., 2019. New insight into the biogeochemical cycling of methane, S and Fe above the sulfate-methane transition zone in methane hydrate-bearing sediments: a case study in the Dongsha area, South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 145: 97–108. DOI: 10.1016/j.dsr.2019.01.011.
  • Li H., Yang Q., Zhou H., 2020. Niche differentiation of sulfate- and iron-dependent anaerobic methane oxidation and methylotrophic methanogenesis in deep sea methane seeps. Frontiers in Microbiology, 11: 1409. DOI: 10.3389/fmicb.2020.01409.
  • Liu R., Zhang Y., Ding R., Li D., Cao Y., Yang M., 2009. Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. Journal of Bioscience and Bioengineering,108: 400–407. DOI: 10.1016/j.jbiosc.2009.05.010.
  • Lösekann T., Knittel K., Nadalig T., Fuchs B., Niemann H., Boetius A., Amann R., 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Applied and Environmental Microbiology, 73: 3348–3362. DOI: 10.1128/AEM.00016-07.
  • MacLeod F., Kindler G.S., Wong H.L., Chen R., Burns B.P., 2019. Asgard archaea: diversity, function, and evolutionary implications in a range of microbiomes. AIMS Microbiology, 5: 48–61. DOI:10.3934/microbiol.2019.1.48.
  • Mardanov A.V., Ravin N.V., Svetlitechnyi V.A., Beletsky A.V., Miroshnichenko M.L., Bonch-Osmolovskaya E.A., Skryabin K.G., 2009. Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a Siberian oil reservoir, as revealed by genome analysis. Applied and Environmental Microbiology, 75: 4580–4588. DOI: 10.1128/AEM.00718-09.
  • Mardanov A.V., Slododkina G.B., Slobodkin A.I., Beletsky A.V., Gavrilov S.N., Kublanov I.V., Bonch-Osmolovskaya E.A., Skryabin K.G., Ravin N.V., 2015. The Geoglobus acetivorans genome: Fe(III) reduction, acetate utilization, autotrophic growth, and degradation of aromatic compounds in a hyperthermophilic archaeon. Applied and Environmental Microbiology, 81: 1003–1012. DOI: 10.1128/AEM.02705-14.
  • Meslé M., Dromart G., Oger P., 2013. Microbial methanogenesis in subsurface oil and coal. Research in Microbiology, 146: 959–972. DOI: 10.1016/j.resmic.2013.07.004.
  • Niemann H., Lösekann T., de Beer D., Elvert M., Nadalig T., Knittel K., Amann R., Sauter E.J., Schlüter M., Klages M., Foucher J.P., Boetius A., 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature,443: 854–858. DOI: 10.1038/nature05227.
  • Offre P., Spang A., Schleper C., 2013. Archaea in biogeochemical cycles. Annual Review of Microbiology, 67: 437–457. DOI:10.1146/annurev-micro-092412-155614.
  • Parks D.H., Chuvochina M., Chaumeil P.A., 2020. A complete domain-to-species taxonomy for Bacteria and Archaea. Nature Biotechnology, 38: 1079–1086. DOI: 10.1038/s41587-020-0501-8.
  • Piubeli F., Grossman M.J., Fantinatti-Garboggini F., Durrant L.R., 2014. Phylogenetic analysis of the microbial community in hypersaline petroleum produced water from the Campos Basin. Environmental Science and Pollution Research, 21: 12006–12016.DOI: 10.1007/s11356-014-3155-6.
  • Schnakenberg A., Aromokeye D.A., Kulkarni A., Maier L., Wunder L.C., Richter-Heitmann T., Pape T., Ristova P.P., Bühring S.I., Dohrmann I., Bohrmann G., Kasten S., Friedrich M.W., 2021. Electron acceptor availability shapes anaerobically methane oxidizing archaea (ANME) communities in South Georgia sediments. Frontiers in Microbiology, 12: 617280. DOI: 10.3389/fmicb.2021.617280.
  • Seitz K.W., Dombrowski N., Eme L., Spang A., Lombard J., Sieber J.R., Teske A.P., Ettema T.J.G., Baker B.J., 2019. Asgard archaea capable of anaerobic hydrocarbon cycling. Nature Communications,10: 1822. DOI: 10.1038/s41467-019-09364-x.
  • Shlimon A.G., Mansurbeg H., Othman R.S., Gittel A., Aitke C.M., Head I.M., Finster K.W., Kjeldsen K.U., 2020. Microbial community composition in crude oils and asphalts from the Kurdistan region of Iraq. Geomicrobiology Journal, 37: 635–652. DOI:10.1080/01490451.2020.1753131.
  • Sierra-Garcia I.N., Belgini D.R.B., Torres-Ballesteros A., Paez-Espino D., Capilla R., Santos Neto E.V., Gray N., de Oliveira V.M., 2020. In depth metagenomic analysis in contrasting oil wells reveals syntrophic bacterial and archaeal associations for oil biodegradation in petroleum reservoirs. Science of the Total Environment,715: 136646. DOI: 10.1016/j.scitotenv.2020.136646.
  • Spang A., Saw J., Jørgensen S., Zaremba-Niedzwiedzka K., Martijn J., Lind A.E., van Eijk R., Schleper C., Guy L., Ettema T.J., 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature, 521: 173–179. DOI: 10.1038/nature14447.
  • Spang A., Caceres E.F., Ettema T.J., 2017. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science, 357: eaaf3883. DOI: 10.1126/science.aaf3883.
  • Takai K., Nakamura K., 2011. Archaeal diversity and community development in deep-sea hydrothermal vents. Current Opinion in Microbiology, 14: 282–291. DOI: 10.1016/j.mib.2011.04.013.
  • Tapilatu Y.H., Grossi V., Acquaviva M., Militon C., Bertrand J.C., Cuny P., 2010. Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles, 14: 225–231. DOI: 10.1007/s00792-010-0301-z.
  • Taran M., 2011. Poly(3-hydroxybutyrate) production from crude oil by Haloarcula sp. IRU1: optimization of culture conditions by Taguchi method. Petroleum Science and Technology, 29:1264–1269. DOI: 10.1080/10916466.2010.499405.
  • Vanwonterghem I., Evans P., Parks D., Jensen P.D., Woodcroft B.J., Hugenholtz P., Tyson G.W., 2016. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nature Microbiology, 1: 16170. DOI: 10.1038/nmicrobiol.2016.170.
  • Vigneron A., Cruaud P., Pignet P., Caprais J.C., Cambon-Bonavota M.A., Godfroy A., Toffin L., 2013. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California). ISME Journal, 7: 1595–1608. DOI:10.1038/ismej.2013.18.
  • Vigneron A., Alsop E.B., Cruaud P., Philibert G., King B., Baksmaty L., Lavallée D., Lomas B.P., Kyrpides N.C., Head I.M., Tsesmetzis N., 2017. Comparative metagenomics of hydrocarbon and methane seeps of the Gulf of Mexico. Scientific Reports, 7: 16015. DOI:10.1038/s41598-017-16375-5.
  • Vigneron A., Alsop E.B., Cruaud P., Philibert G., King B., Baksmaty L., Lavallée D., Lomas B.P., Eloe-Fadrosh E., Kyrpides N.C., Head I.M., Tsesmetzis N., 2019. Contrasting pathways for anaerobic methane oxidation in Gulf of Mexico cold seep sediments. mSystems, 4:e00091-18. DOI: 10.1128/mSystems.00091-18.
  • Wang Y., Wegener G., Hou J., Wang F., Xiao X., 2019a. Expanding anaerobic alkane metabolism in the domain of Archaea. Nature Microbiology, 4: 595–602. DOI: 10.1038/s41564-019-0364-2.
  • Wang Y., Feng X., Natarajan V.P., Xiao X., Wang F., 2019b. Diverse anaerobic methane- and multi-carbon alkane-metabolizing archaea coexist and show activity in Guaymas Basin hydrothermal sediment. Environmental Microbiology, 21: 1344–1355. DOI:10.1111/1462-2920.14568.
  • Wang H., Bier R., Zgleszewski L., Peipoch M., Omondi E., Mukherjee A.,Chen F., Zhang C., Kan J., 2020. Distinct distribution of Archaea from soil to freshwater to estuary: implications of archaeal composition and function in different environments. Frontiers in Microbiology, 11: 576661. DOI: 10.3389/fmicb.2020.576661.
  • Woese C.R., Fox G.E., 1977. The concept of cellular evolution. Journal of Molecular Evolution, 10: 1–6. DOI: 10.1007/BF01796132.
  • Woese C.R., Magrum L.J., Fox G.E., 1978. Archaebacteria. Journal of Molecular Evolution, 11: 245–252. DOI: 10.1007/BF01734485.
  • Xin H., Utoh T., Zhou P., Suzuki K., Nakase T., 2001. Natronobacterium nitratireducens sp.nov., a haloalkaliphilic archaeon isolated from a soda lake in China. International Journal of Systematic and Evolutionary Microbiology, 51: 1825–1829. DOI:10.1099/00207713-51-5-1825.
  • Yan L., Yu D., Hui N., Naanuri E., Viggor S., Gafarov A., Sokolov S.L., Heinaru A., Romantschuk M., 2018. Distribution of archaeal communities along the coast of the Gulf of Finland and their response to oil contamination. Frontiers in Microbiology, 9: 15. DOI: 10.3389/fmicb.2018.00015.
  • Yang J., Li G., Qian Y., Zhang F., 2018. Increased soil methane emissions and methanogenesis in oil contaminated areas. Land Degradation and Development, 29: 563–571. DOI: 10.1002/ldr.2886.
  • Zhang Ch., Meckenstock R.U., Weng S., Wei G., Hubert C.R.J., Wang J.-H., Dong X., 2021. Marine sediments harbor diverse Archaea and bacteria with potentials for anaerobic hydrocarbon degradation via fumarate addition. FEMS Microbiology Ecology,97: fiab045. DOI: 10.1093/femsec/fiab045.
  • Zhang J.-W., Dong H.-P., Hou L.-J., Liu Y., Ou Y.-F., Zheng Y.-L., Han P., Liang X., Yin G.-Y., Wu D.-M., Liu M., Li M., 2021. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME Journal, 15: 1826–1843. DOI:10.1038/s41396-020-00890-x.
  • Zhao D., Kumar S., Zhou J., Wang R., Li M., Xiang H., 2017. Isolation and complete genome sequence of Halorientalis hydrocarbonoclasticus sp. nov., a hydrocarbon-degrading haloarchaeon. Extremophiles, 21: 1081–1090. DOI: 10.1007/s00792-017-0968-5.
  • Zhou Z.-F., Wang M.-X., Zuo X.-H., Yao Y.-H., 2017. Comparative investigation of bacterial, fungal, and archaeal community structures in soils in a typical oilfields in Jianghan, China. Archives of Environmental Contamination and Toxicology, 71: 65–77. DOI:10.1007/s00244-016-0333-1.
  • Zhou L., Zhou Z., Lu Y.-W., Ma L. Bai Y., Li X.-X., Mbadinga M.,Liu Y.-F., Yao X.-C., Zhang Z.-R., Liu J.-F., Yang S.-Z., Wang W.-D., Gu J.-D., Mu B.-Z., 2019. The newly proposed TACK and DPANN archaea detected in the production waters form a high-temperature petroleum reservoir. International Biodeterioration and Biodegradation, 143: 104729. DOI:10.1016/j.ibiod.2019.104729.
  • Zhou Z., Zhang C.J., Liu P.F., Laso-Perez R., Yang L., Bai L.P., Yang M., Lin J.Z., Wang W.D., Wegner G., Li M., Cheng L.,2021. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature, 601: 257–262. DOI: 10.1038/s41586-021-04235-2.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db82a432-0be4-4d7e-ba6e-f3801d28f4f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.