PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transport of Microbial Components in Coarse and Fine Particle Fractions in Office Buildings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Transport cząstek pochodzenia mikrobiologicznego w drobnej i grubej frakcji aerozolu w budynkach biurowych
Języki publikacji
EN
Abstrakty
EN
In old and modern interiors, particular attention is focused on the air quality as one of major determinants of the well-being of occupants. Exposure to microbiological contaminants in such close indoor space may be associated with the occurrence of various adverse health outcomes in the exposed individuals. Because the size of inhaled particles determines their place of deposition in the human airways and the associated adverse health outcomes, a detailed characteristic of airborne microbial components carried on fine dust particles in office buildings is needed. The aim of this study was to determine the concentrations of endotoxins, (1-3)-β-D-glucans and culturable microorganisms in coarse, fine and aerosol fractions collected in two office buildings in Warsaw. The concentrations of particulate aerosol were measured using Sioutas impactors in PM1, PM2.5, and PM2.5-10. Kinetic-QCL LAL and Glucatell assays were used to detect endotoxin and (1-3)-β-D-glucan concentrations, respectively. The bioaerosol samples were taken using six-stage Andersen impactor as coarse (> 7-2.1µm) and fine (< 2.1µm) fractions, as well. The mean concentrations of particulate aerosol, endotoxins and (1-3)-β-D-glucans in all studied offices were: in PM1 – 6 μg/m3, 4 EU/m3 and 5 ng/m3; in PM2.5 – 11 μg/m3, 6 EU/m3 and 10 ng/m3; and PM10-2.5 – 3.5 μg/m3, 2 EU/m3 and 2.5 ng/m3, respectively. The concentrations of endotoxins and (1-3)-β-glucans in PM2.5 were significantly higher than in PM10-2.5 (p < 0.01 and p < 0.001, respectively) and accounted for 71% and 84% of their total load in PM10. The airborne bacteria occurred mostly in fine fraction (average 3.9 · 102 CFU/m3, p < 0.01), while fungi in coarse fraction of aerosol (5.6 · 101 CFU/m3). The concentrations of endotoxins showed a positive correlation with PM1 (r = 0.61, p < 0.05) and PM2.5 levels (r = 0.76, p < 0.05) as well as with Gram-negative rods in fine fraction (r = 0.75, p < 0.05). The concentrations of (1-3)-β-D-glucans showed positive correlation with PM2.5 (r = 0.54, p < 0.05) and fungi in fine fraction (r = 0.59, p < 0.05). This study demonstrated that endotoxins and (1-3)-β-D-glucans are associated mostly with fine fraction of aerosol particles. Such particles can penetrate the lower parts of the human respiratory system posing a health risk for exposed people. The main source of endotoxins in the offices were Gram-negative rods. The sources of (1-3)-β-D-glucans were probably both fungal conidia and their fragments of aerodynamic diameters <2.1 μm. The noted concentrations of endotoxins and microorganism were within the range normally observed in this type of facilities. Nevertheless, constant monitoring of the hygienic condition is suggested, including regular cleaning and replacement of air filters in the air-conditioning system.
PL
Zarówno w starych, jak i nowoczesnych wnętrzach budynków biurowych szczególną uwagę zwraca się na jakość powietrza, która jest wyznacznikiem dobrostanu mieszkańców. Narażenie na zanieczyszczenia mikrobiologiczne w takich zamkniętych pomieszczeniach może być związane z pojawianiem się różnych niekorzystnych efektów zdrowotnych u narażonych osób. Ponieważ wielkość wdychanych cząstek determinujeich miejsce osadzania w drogach oddechowych człowieka i związane z tym problemy zdrowotne, potrzebna jest szczegółowa charakterystyka frakcji cząstek pyłowych transportujących cząstki pochodzenia mikrobiologicznego w budynkach biurowych. Celem niniejszego badania było poznanie zakresów stężeń endotoksyn, (1-3)-β-D-glukanów i mikroorganizmów w drobnej i grubej frakcji aerozolu ziarnistego w dwóch budynkach biurowych w Warszawie. Stężenia aerozolu ziarnistego zmierzono przy użyciu impaktorów Sioutas we frakcjach PM1, PM2.5 i PM2.5-10. Testy Kinetic-QCL LAL i Glucatell zastosowano odpowiednio do detekcji endotoksyn i β-D-glukanów. Próbki biaerozolu pobrano przy użyciu sześcio-stopniowego impaktora Andersena we frakcji gruboziarnistej (> 7-2,1 μm) i drobnej (< 2,1 μm). Średnie stężenia aerozolu ziarnistego, endotoksyn i β-D-glukanów w wszystkich badanych biurach wynosiły odpowiednio: w PM1 – 6 μg/m3, 4 JE/m3 i 5 ng/m3; w PM2.5 – 11 μg/m3, 6 JE/m3 i 10 ng/m3 i w PM10-2.5 – 3.5 μg/m33, 2 JE/m3 i 2.5 ng/m3. Stężenia endotoksyn i β-D-glukanów w PM2.5 były znacznie wyższe niż w PM10-2.5 (odpowiednio p < 0.01 i p < 0.001) i stanowiły 71% i 84% frakcji PM10. W badanych pomieszczeniach, bakterie występowały głównie w drobnej frakcji aerozolu (3.9·102 JTK/m3, p < 0.01), podczas gdy grzyby izolowano najczęściej z frakcji gruboziarnistej aerozolu (5.6·101 JTK/m3). Stwierdzono pozytywną korelację pomiędzy stężeniami endotoksyn a stężeniami pyłu PM1 (r = 0.61, p < 0.05) i PM2.5 (r = 0.76, p < 0.05), jak również Gram-ujemnymi pałeczkami (r = 0.75, p < 0.05). Stężenia β-D-glucans wykazały korelację z PM2.5 (r = 0.54, p < 0.05) oraz grzybami w drobnej frakcji (r = 0.59, p < 0.05). Niniejsze badania wykazały, że głównym nośnikiem endotoksyn i (1-3)-β-Dglukanów w pomieszczeniach biurowych były drobne frakcje aerozolu ziarnistego. Cząstki te mogą przenikać do dolnych dróg oddechowych powodując niekorzystne skutki zdrowotne u narażonych osób. Stwierdzono, że głównym źródłem endotoksyn były Gram-ujemne pałeczniki. Źródłami (1-3)-β-D-glukanów były głównie fragmenty strzępek grzybni (lub spor) o aerodynamicznych średnicach <2,1 μm. Odnotowane stężenia endotoksyn i mikroorganizmów w biurach mieściły się w zakresie normalnie obserwowanym w tego typu obiektach. Niemniej jednak sugerowane jest stałe monitorowanie stanu higienicznego tych pomieszczeń, w tym regularne czyszczenie i wymienianie filtrów powietrza w instalacji klimatyzacyjnej.
Słowa kluczowe
Rocznik
Strony
1099--1115
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
  • Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
Bibliografia
  • 1. Akpinar-Elci, M., White, S.K., Siegel, P.D., Park, J.H., Visotcky, A., Kreiss, K., Cox-Ganser, J.M. (2013). Markers of upper airway inflammation associated with microbial exposure and symptoms in occupants of a water‐damaged building. American Journal of Industrial Medicine, 56(5), 522-530.
  • 2. Balasubramanian, R., Nainar, P., Rajasekar, A. (2012). Airborne bacteria, fungi, and endotoxin levels in residential microenvironments: a case study. Aerobiologia, 28, 375-390.
  • 3. Bouillard, L., Michel, O., Dramaix, M., Devleeschouwer, M. (2005). Bacterial contamination of indoor air, surfaces, and settled dust, and related dust endotoxin concentrations in healthy office buildings. Annals of Agricultural and Environmental Medicine, 12(2), 187-192.
  • 4. Bródka, K., Sowiak, M., Kozajda, A., Cyprowski, M., Szadkowska-Stańczyk, I. (2012). Czynniki biologiczne wpływające na jakość powietrza w pomieszczeniach biurowych. Medycyna Pracy, 63(3), 303-315.
  • 5. Butler, D.A., Madhavan, G., Alper J. (2016). Health Risks of Indoor Exposure to Particulate Matter: Workshop Summary. Washington, DC: The National Academies Press. Available from https://www.ncbi.nlm.nih.gov/books/NBK390379/
  • 6. Chen, Q., & Hildemann, L.M. (2009). Size-resolved concentrations of particulate matter and bioaerosols inside versus outside of homes. Aerosol Science and Technology, 43, 699-713.
  • 7. Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risk related to exposure to biological agents at work. Official J. Eur. Communities. 2000.L262: 21-45. Available from https://eur-lex.europa.eu/eli/dir/2000/54/oj
  • 8. Douwes, J., Thorne, P., Pearce, N., Heederik, D. (2003). Bioaerosol health effects and exposure assessment: progress and prospects. Annals of Occupational Hygiene, 47(3), 187-200.
  • 9. Flannigan, B., Samson, R.A., Miller J.D. (2011). Microorganisms in Home and IndoorWork Environments: Diversity, Health Impacts, Investigation and Control, Second Edition. Boca Raton, FL: CRC Press
  • 10. Frączek, K. Chmiel, M.J., Bulski K. (2018). Bacterial Aerosol at Selected Rooms of School Bulidings of Malopolska Province. Rocznik Ochrona Środowiska, 20, 1583-1596.
  • 11. Fromme, H. (2012). Particles in the Indoor Environment. In S. Kumar & R. Kumar (Eds.), Air Quality - Monitoring and Modeling (pp. 117-144). IntechOpen. Available from https://www.intechopen.com/books/air-quality-monitoring-and-modeling/ particles-in-the-indoor-environment
  • 12. Gemenetzis, P., Moussas, P., Arditsoglou, A., Samara, C. (2006). Mass concentration andelemental composition of indoor PM2.5 and PM10 in University rooms in Thessaloniki, northern Greece. Atmospheric Environment, 40, 3195-3206.
  • 13. Gołofit-Szymczak, M., & Górny, R.L. (2010). Bacterial and fungal aerosols in air-conditioned office buildings in Warsaw, Poland – winter season. International Journal ofOccupational Safety and Ergonomics, 16, 456-476.
  • 14. Górny, R.L. & Dutkiewicz, J. (1998). Evaluation of microorganisms and endotoxin levelsof indoor air in living rooms occupied by cigarette smokers and non-smokers inSosnowiec, Upper Silesia, Poland. Aerobiologia, 14, 235-239.
  • 15. Górny, R.L., Cyprowski, M., Ławniczek-Wałczyk, A., Gołofit-Szymczak, M., Zapór, L.(2011). Biohazards in the indoor environment – A role for threshold limit values in exposure assessment. In M. Dudzińska (Ed.), Management of Indoor Air Quality (1-20). London: CRC Press.
  • 16. Górny, R.L., Douwes, J., Versloot, P., Heederik, D., Dutkiewicz, J. (1999). Application of the classic Limulus test and the quantitative kinetic chromogenic LAL method for evaluation of endotoxin concentration in indoor air. Annals of Agricultural and Environmental Medicine, 6, 45-51.
  • 17. Hardin, B.D., Kelman, B.J., Saxon, A. (2003). Adverse human health effects associated with molds in the indoor environment. Journal of Occupational and Environmental Medicine, 45(5), 470-478.
  • 18. Harkawy, A., Górny, R., Ogierman, L., Wlazło, A., Ławniczek-Wałczyk, A., Niesler, A. (2011). Bioaerosol assessment in naturally ventilated historical library building with restricted personnel access. Annals of Agricultural and Environmental Medicine, 18(2), 323-329.
  • 19. Hospodsky, D., Qian, J., Nazaroff, W. W., Yamamoto, N., Bibby, K., Rismani-Yazdi, H., Peccia, J. (2012). Human occupancy as a source of indoor airborne bacteria. PloS one, 7(4), e34867.
  • 20. Ławniczek-Wałczyk, A. & Górny, R.L. (2010). Endotoxins and β-glucans as markers of microbiological contamination - characteristics, detection, and environmental exposure.Annals of Agricultural and Environmental Medicine, 17, 193-208.
  • 21. Ławniczek-Wałczyk, A., Górny, R. L., Golofit-Szymczak, M., Niesler, A., Wlazlo, A.(2013). Occupational exposure to airborne microorganisms, endotoxins and β-glucansin poultry houses at different stages of the production cycle. Annals of Agricultural and Environmental Medicine, 20(2), 259-268.
  • 22. Li, Z, Wen, Q., Zhang, R. (2017). Sources, health effects and control strategies of indoor fine particulate matter (PM2.5): A review. Science of the Total Environment, 15, 610-622.
  • 23. Madsen, A.M. & Nielsen, S.H. (2010). Airborne endotoxins associated with particles of different sizes and affected by water content in handled straw. International Journal of Hygiene and Environmental Health, 213, 278-284.
  • 24. Madsen, A.M., Wagtberg Frederiksen, M., Allermann, L., Peitersen, J.H. (2010). (1→3)-β-D-glucan in different background environments and seasons. Aerobiologia, 27, 173-179.
  • 25. Menetrez, M.Y., Foarde, K.K., Esch, R.K., Schwartz, T.D., Dean, T.R., Hays, M.D., Cho, S.H., Betancourt, D.A., Moore, S.A. (2009). An evaluation of indoor and outdoor biological particulate matter. Atmospheric Environment, 43, 5476-5483.
  • 26. Mentese, S., Rad, A.Y., Arısoy, M., & Güllü, G. (2012). Seasonal and Spatial Variations of Bioaerosols in Indoor Urban Environments, Ankara, Turkey. Indoor and Built Environment, 21(6), 797-810.
  • 27. Morawska, L., Ayoko, G.A., Bae, G.N., Buonanno, G., Chao, C.Y.H., Clifford, S., Fu,S.C., Hänninen, O., He, C., Isaxon, C., Mazaheri, M., Salthammer, T., Waring, M.S., Wierzbicka, A. (2017). Airborne particles in indoor environment of homes, schools,offices and aged care facilities: The main routes of exposure. Environment International,108, 75-83.
  • 28. Park, J.H., Cho, S.J., White, S.K., Cox-Ganser, J.M. (2018). Changes in respiratory and non-respiratory symptoms in occupants of a large office building over a period of moisture damage remediation attempts. PLoS One, 13(1), e0191165
  • 29. Poole, J. A., Gleason, A. M., Bauer, C., West, W. W., Alexis, N., van Rooijen, N., Reynolds, S.J., Romberger, D.J., Kielian, T.L. (2012). CD11c(+)/CD11b(+) cells are critical for organic dust-elicited murine lung inflammation. American Journal of Respiratory Cell and Molecular Biology, 47(5), 652-659.
  • 30. Reynolds, S.J., Black, D.W., Borin, S.S., Breuer, G., Burmeister, L.F., Fuortes, L.J., Smith, T.F., Stein, M.A., Subramanian, P., Thorne, P.S., Whitten, P. (2001). Indoor environmental quality in six commercial office buildings in the Midwest United States. Applied Occupational and Environmental Hygiene, 16, 1065-1077.
  • 31. Ross, M.A., Curtis, L., Scheff, P.A., Hryhorczuk, D.O., Ramakrishnan, V., Wadden R.A., Persky, V.W. (2000). Association of asthma symptoms and severity with indoor bioaerosols. Allergy, 55, 705-711.
  • 32. Ruzer, L.S., & Harley, N.H., (Eds.). (2012). Aerosols Handbook: Measurement, Dosimetry, and Health Effects. Boca Raton: CRC Press – Taylor and Francis Group.
  • 33. Rylander, R. (1997). Investigations of the relationship between disease and airborne (1-3)-β -D-glucan in buildings. Mediators of Inflammation, 6, 275-277.
  • 34. Rylander, R. (1999). Indoor air-related effects and airborne (1 -> 3)-beta-D-glucan. Environmental Health Perspectives, 107, Suppl 3, 501-503.
  • 35. Salimifard, P., Rim, D., Gomes, C., Kremer, P., Freihaut J.D. (2017).Resuspension of biological particles from indoor surfaces: Effects of humidity and air swirl. Science of the Total Environment, 1, 583, 241-247.
  • 36. Singh, U., Levin, L., Grinshpun, S.A., Schaffer, C., Adhikari, A., Reponen, T. (2011a).Airborne Endotoxin and β-D-glucan in PM1 in Agricultural and Home Environments. Aerosol and Air Quality Research, 11, 376-386.
  • 37. Singh, U., Levin, L., Grinshpun, S.A., Schaffer, C., Adhikari, A., Reponen, T. (2011b). Infuence of home characteristics on airborne and dustborne endotoxin and β-D-glucan. Journal of Environmental Monitoring, 13, 3246-3253.
  • 38. Szigeti, T., Kertész, Z., Dunster, C., Kelly, F. J., Záray, G., Mihucz, V. (2014). Exposure to PM2.5 in modern office buildings through elemental characterization and oxidative potential. Atmospheric Environment, 94, 44-52.
  • 39. World Health Organization (WHO). Occupational and Environmental Health Team. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxideand sulfur dioxide : global update 2005: summary of risk assessment. World Health Organization. Avaliable from http://www.who.int/iris/handle/10665/69477
  • 40. Yoda, Y., Tamura, K., Shima, M. (2017). Airborne endotoxin concentrations in indoor and outdoor particulate matter and their predictors in an urban city. Indoor Air, 27, 955-964.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db829001-7d95-4699-b603-a52cdd011720
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.