Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sweet Sorghum (Sorghum bicolor (L.) Moench) stalks as lignocellulosic agricultural biomass residues are one of the agricultural wastes that do not have economic value and are abundant enough in Indonesia. Compared to sugar cane, total sugar in the sorghum stalk had almost same juice yield. On the basis of the sufficient total sugar content in the sorghum crop residues, sorghum stalk is one of the promising potential sources for bioethanol production. This study was conducted to determine the optimum substrate concentration and microorganism capability to fermentation sorghum stalks using Separated Hydrolysis and Fermentation (SHF) method. The pretreatment conducted in this study was carried out using physical and chemical methods. The sorghum stalks were treated with chopping, drying, grinding and separate with the concentration of 25 grams (5%) and 50 grams (10%), then 0.25% H2SO4 was added and heated at the temperature of 121°C for 10 minutes. The enzymatic hydrolysis method using T.viride and A.niger was performed. After hydrolysis, 20% S.cerevisiae CC 3012 or 20% consortium S.cerevisiae CC 3012-P.stipitis were added for the fermentation process. The data obtained in this research pertanied to the value of lignin, cellulose, hemicellulose, reducing sugar, C, N, P, and bioethanol. The results of this study indicated the highest ethanol yield is produced by 50 g substrate as the optimum substrate using the consortium of S. cerevisiae CC 3012-P. stipitis for 24 hours of fermentation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
54--60
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Departement of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS Surabaya, 60111, Indonesia
- Universitas Negeri Jember, Jember, Indonesia
autor
- Departement of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS Surabaya, 60111, Indonesia
autor
- Departement of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS Surabaya, 60111, Indonesia
Bibliografia
- 1. Acharya, P.B., Acharya, D.K., and Modi, A.H. 2008. Optimization For Cellulase Production By Aspergillus Niger Using Saw Dust As Substrate. African Journal Biotechnol. 7(22): 4147–4152.
- 2. Almodares, A., and Hadi, M.R. 2009. Production of bioethanol from sweet sorghum: A review, African Journal of Agricultural Research. 5(9):772–780.
- 3. Bayrakci, A.G., and Koçar, G. 2014. SecondGeneration Bioethanol Production From Water Hyacinth and Duckweed In Izmir: A Case Study, Renewable and Sustainable Energy Reviews. 30: 306–316.
- 4. Bizukojc, M. and Stanislaw L. 2004. The Kinetics of Simultaneous Glucose and Fructose Uptake and Product Formation by Aspergillus Niger in Citric Acid Fermentation. Process Biochemistry 39 (12):2261–68.
- 5. Choudhary, S.J., Mehmood, S., and Naz, H. 2013. Optimization of pretreatment conditions of Sorghum bicolor straw, a substrate for bioethanol production: a pilot study, Pakistan Journal Biochem. Mol. Biol. 46(2):80–84.
- 6. Cifuentes, R., Bressani, R ., Rolz, C. 2014. The potential of sweet sorghum as a source of ethanol and protein, Energy for Sustainable Development, 21:13–19.
- 7. Farrell, A.E, Plevin, R.J.,Turner, B.T., Jones, A.D., O’Hare, M., and Kammen, D.M. 2006. Ethanol Can Contribute To Energy And Environmental Goals. Science. 311: 506–508.
- 8. Ganguly, A., Chatterjeea, P.K., and Dey, A. 2013. Studies On Ethanol Production From Water Hyacinth-A Review, Renewable and Sustainable Energy Reviews. 16: 966–972.
- 9. Griffin, D.H. 1996. Fungal Physiology, Wiley Science Paper Back Series.
- 10. Ha, S.J., Galazka, J.M., Kim, S.R., Choi, J.H., Yang, X., Seo, J.H., Glass, N.L., Cate, J.H.D., and Jin, Y.S. 2010. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation, Proceedings of the National Academy of Sciences of the United States of America Current Issue. 108(2):504–509.
- 11. Idris A. S. O., Pandey A., Rao S.S., and Sukumaran R. K. 2017. Cellulase production through solidstate tray fermentation, and its use for bioethanol from sorghum stover. Bioresource Technology. 242:265–271.
- 12. Kayhanian, M., 1999. Ammonia inhibition in highsolids biogasification: an overview and practical solutions. Environ. Technol. 20:355–365.
- 13. Kleinert, M. and Barth, T. 2008. Towards A Lignincellulosic Biorefinery: Direct One-Step Conversion Of Lignin To Hydrogen-Enriched Biofuel, Energy Fuel. 22(2): 1371–1379.
- 14. Li, Y., Park, J., Shiroma, R., and Tokuyasu, K. (2011). Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Article in Press. Journal of bioscience and bioengineering. JBIOSC-00594, Hal. 5
- 15. Li, Y., Park, S.Y., and Zhu, J., 2011. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustainable Energy Rev. 15:821–826.
- 16. McIntosh, S., and Vancov, T. (2010), Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol, Vol. 101, Issue 67, hal. 18–27.
- 17. Mood, S.H., Golfeshan, A.H., Tabatabaei, M., Jouzani, G.S., Najafi, G.H.,Gholami, M., and Ardjmand, M. (2013), Lignocellulosic Biomass To Bioethanol, A Comprehensive Review With A Focus On Pretreatment, Renewable and Sustainable Energy Reviews, 27:77–93.
- 18. Neethu, K., Rubeena, M., Sajith, S., Sreedevi, S., Priji, P., Unni, K. N., Josh, M. K. S., Jisha, V. N., Pradeep, S., and Benjamin, S. 2012. A Novel Strain of Trichoderma viride Shown Complete Lignocellulotyc Activities. Advances in Bioscience and Biotechnology. 3:1160–1166.
- 19. Nigam, J.N. 2002., Bioconversion of Water Hyacinth (Eichhornia Crassipes) Hemicellulose Acid Hydrolysate to Motor Fuel Ethanol by Xylose-Fermenting Yeast. Journal Biotechnology. 97:107–116.
- 20. Pham, T.H., Berrin, J.G., Record, E., To, K. A., and Sigoillot, J. 2010. Hydrolysis of softwood by Aspergillus mannanase: Role of a carbohydrate-binding module. Journal of Biotechnology.148:163–170.
- 21. Rastogi, M, and Shrivastava S. 2017. Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews.80:330–340.
- 22. Sun, Y. and Cheng, J. 2002. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresource Technology. 83: 1–11.
- 23. Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., and Raab. T. 2004. Toward a systalks approach to understanding plant cell walls, Science, 306: 2206–2211.
- 24. Van Zyl, C., Prior, B.A., and Du Preez, J.C. 1988. Production of ethanol from sugarcane bagasse hemicellulose hydrolyzate by Pichia stipitis. Appl. Biochem. Biotechnol. 17: 357–369.
- 25. Wahlbom, C.F., and Hahn-Hägerdal, B. 2002. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 78:172–178.
- 26. Zabed, H., Sahu, J.N., Boyce, A.N. 2016. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches, Renewable and Sustainable Energy Reviews. 66:751–774.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db82784e-c219-433a-a126-b7a6401deea1