PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydration layers on clay mineral surfaces in aqueous solutions: a review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Warstwy uwodnione na powierzchni minerałów ilastych w roztworach wodnych: przegląd
Języki publikacji
EN
Abstrakty
EN
Hydration layer on clay mineral surfaces is originated from the adsorption of polar water molecules and hydrated cations on the surfaces through unsaturated ionic bonds, hydrogen bonds and van der Waals bonds. It has attracted great attentions because of their important influences on the dispersive stability of the particles in aqueous solutions. This review highlighted the molecular structure of clay minerals, the origin of hydration layers on clay mineral surfaces, the hydration layer structural model, hydration force and the main parameters of affecting the hydration layers on clay minerals (crystal structure, cationic type and strength, and solution pH). Also, the research methods for hydration layers were briefly described, especially the determination of hydration layer thickness by the Einstein viscosity method and AFM method. In addition, the applications of the stability of fine clay mineral particles in aqueous suspensions were summarized.
PL
Warstwa uwodniona na powierzchni minerałów ilastych (gliniastych) powstaje w wyniku adsorpcji polarnych cząsteczek wody i uwodnionych kationów powierzchniowych wiązanych za pomocą nienasyconych wiązań jonowych, wiązań wodorowych i wiązań van der Waalsa. Zagadnienie to wzbudza wiele uwagi ze względu na to, że w dużej mierze warunkuje stabilność dyspersyjną cząstek w roztworach wodnych. W pracy omówiono strukturę molekularną minerałów ilastych, powstawanie warstw uwodnionych na powierzchni minerałów ilastych i siły hydratacji; przedstawiono także model strukturalny warstwy uwodnionej oraz główne parametry warunkujące powstawanie warstwy uwodnionej na powierzchni materiałów ilastych (struktura krystaliczna, rodzaj występujących kationów, stężenie roztworu i jego pH). Ponadto, pokrótce przedstawiono metody badań, ze szczególnym uwzględnieniem badania grubości warstw uwodnionych przy zastosowaniu modelu lepkości Einsteina oraz metody AFM. Ponadto, zestawiono zagadnienia związane ze stabilnością cząstek drobnoziarnistych minerałowa ilastych i ich potencjalne zastosowania.
Rocznik
Strony
489--500
Opis fizyczny
Bibliogr. 69 poz., rys.
Twórcy
autor
  • School of Materials Science and Engineering, Anhui University of Science and Technology, Shungeng Road 168, Huainan, Anhui, C.P. 232001, China
autor
  • School of Materials Science and Engineering, Anhui University of Science and Technology, Shungeng Road 168, Huainan, Anhui, C.P. 232001, China
autor
  • Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi, Av. Sierra Leona 550, San Luis Potosi, C.P. 78210, Mexico
Bibliografia
  • [1] Acuna S.M., Toledo P.G., 2011. Nanoscale repulsive forces between mica and silica surfaces in aqueous solutions. Journal of Colloid and Interface Science 361, 397-399.
  • [2] Anderson R.L., Ratcliffe I., Greenwell H.C., Williams P.A., Cliffe S., Coveney P.V., 2010. Clay swelling - A challenge in the oilfield. Earth-Science Reviews 98, 201-216.
  • [3] Amorim C.L.G., Lopes R.T., Barros R.C., Queiroz J.C., 2007. Effect of clay-water interactions on clay swelling by X-ray diffraction. Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 580, 768-70.
  • [4] Annabi-Bergaya F., Cruz, M.I., Gatineau L., Fripiat J.J., 1980a. Adsorption of alcohols by smectites. 2. Role of the exchangeable cations. Clay Minerals 15, 219-223.
  • [5] Annabi-Bergaya F., Cruz M.I., Gatineau L., Fripiat J.J., 1980b. Adsorption of alcohols by smectites. 3. Nature of the bonds. Clay Minerals 15, 225-237.
  • [6] Atesok G., Boylu F., Sirkeci A.A, Dincer H., 2002. The effect of coal properties on the viscosity of coal-water slurries. Fuel 81, 1855-1858.
  • [7] Bailey L., Keall M., Audibert A., Lecourtier, J., 1994. Effect of clay/polymer interactions on shale stabilization during drilling. Langmuir 10, 1544-1549.
  • [8] Bergaya, F., Theng, B.K.G., Lagaly, G., 2006. Handbook of Clay Science. Elsevier, Amsterdam; London.
  • [9] Cao Q., Wang X., Miller J.D., Cheng F., Jiao Y., 2011. Bubble attachment time and FTIR analysis of water structure in the flotation of sylvite, bischofite and carnallite. Minerals Engineering 24, 108-114.
  • [10] Chang Y.I., Chang P.K., 2002. The role of hydration force on the stability of the suspension of Saccharomyces cerevisiae- application of the extended DLVO theory. Colloids and Surfaces A: Physicochemical and Engineering Aspects 211, 67-77.
  • [11] Chatterjee A., Mizukami F., Miyamoto A., 2005. Effect of exchangeable cation and hydration layer on the swelling property of 2:1 dioctahedral smectite clay-a periodic density functional study. Studies in Surface Science and Catalysis 156, 335-342.
  • [12] Cancela G.D., Huertas F.J., Taboada E.R., Sanchez Rasero F., Laguna A.H., 1997. Adsorption of water vapor by homoionic montmorillonites. Heats of adsorption and desorption. Journal of Colloid and Interface Science 185, 343-354.
  • [13] Diaz-Perez A., Cortes-Monroy I., Roegiers J.C., 2007. The role of water/clay interaction in the shale characterization. Journal of Petroleum Science and Engineering 58, 83-98.
  • [14] Du H., Miller J.D., 2007. A molecular dynamics simulation study of water structure and adsorption states at talc surfaces. International Journal of Mineral Processing 84, 172-184.
  • [15] Derjaguin B.V., Landau L., 1941. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim USSR 14, 633-662.
  • [16] Drost-Hansen W., 1977. Effects of vicinal water on colloidal stability and sedimentation processes. Journal of Colloid and Interface Science 58, 251-262.
  • [17] Drost-Hansen W., 1971. Structure and Properties of Water at Biological Interfaces. Chemistry of the Cell Interface 1-184.
  • [18] Fukuma T., Higgins M.J., Jarvis S.P., 2007. Direct imaging of individual intrinsic hydration layers on lipid bilayers. Biophysical Journal 92, 3603-3609.
  • [19] Faraudo J., 2011. The missing link between the Hydration Force and interfacial water: Evidence from computer simulations. Current Opinion in Colloid & Interface Science 16,557-560.
  • [20] Grabbe A., Horn A.G., 1993. Double-Layer and Hydration Forces Measured between Silica Sheets Subjected to Various Surface Treatments. Journal of Colloid and Interface Science 157, 375-383.
  • [21] Giese R.F., van Oss C.J., Norris J., Costanzo P.M., 1990. Surface energies of some smectite clay minerals. [In:] Farmer V.C., Tardy Y. (Eds.), Proceedings of the 9th Inter-national Clay Conference, Strasbourg, 1989. Sciences Ge´ologiques, Me´moire No 86, 33-41.
  • [22] Ho R., Yuan J., Shao Z., 1998. Hydration Force in the Atomic Force Microscope: A Computational Study. Biophysical Journal 75 1076-1083.
  • [23] Higgins M.J., Polcik M., 2006. Structured water layers adjacent to biological membranes. Biophysical Journal 91, 2532-2542.
  • [24] Israelachvili J.N., Adams G.E., 1978. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm. Chemical Society Reviews 174, 975-1001.
  • [25] Israelachvili J., McGuiggan P., 1988. Forces between surfaces in liquids. Science 241, 795-800.
  • [26] Jacob N., Israelachvili J., 2011. Solvation, Structural, and Hydration Forces. Intermolecular and Surface Forces (Third Edition) 341-380.
  • [27] Kotov N.A., 2001. Ordered layered assemblies of nanoparticles. Materials Research Bulletin 26, 992-997.
  • [28] Kalinichev A.G., Wang J., James Kirkpatrick R., 2007. Molecular dynamics modeling of the structure, dynamics and energetics of mineral-water interfaces: Application to cement materials. Cement and Concrete Research 37, 337-347.
  • [29] Kendall T.A., Lower S.K., 2004. Forces between Minerals and Biological Surfaces in Aqueous Solution Review Article. Advances in Agronomy 82, 1-54.
  • [30] Lu S., Weng D., 1992. Interface separation principle and application. Metallurgical Industry Press; Beijing.
  • [31] Li Y., Kanda Y., Shinto H., Higashitani K., 2005. Fragile structured layers on surfaces detected by dynamic atomic force microscopy in aqueous electrolyte solutions. Advanced Powder Technology 16, 213-229.
  • [32] Liu, X., Lu, X., 2006. A thermodynamic unders tanding of clay-swell ing inhibition by potassium ions. Angewandte Chemie. International Edition 45, 6300-6303.
  • [33] Michot, L.J., Villieras, F., Francois, M., Yvon, J., LeDred, R., Cases, J.M., 1994. The structural microscopic hydrophilicity of talc. Langmuir 10, 3765-3773.
  • [34] Meagher L.,1992. Direct measurement of forces between silica surfaces in aqueous CaCl2 solutions using an atomic force microscope. Journal of Colloid and Interface Science 152, 293-295.
  • [35] Mooney R.W., Keenan A.G., Wood L.A., 1952a. Adsorption of water vapor by montmo-rillonite. I. Heat of desorption and application of BET theory. Journal of the American Chemical Society 74, 1367-1374.
  • [36] Molina-Bolívar J.A., Ortega-Vinuesa J.L., 1999. How proteins stabilize colloidal particles by means of hydration forces. Langmuir 15, 2644-2653.
  • [37] Molina-Bolı́var J.A., Galisteo-González F., Hidalgo-Alvarez R., 1999. The role played by hydration forces in the stability of protein-coated particles: Non-classical DLVO behaviour. Colloids and Surfaces B: Biointerfaces 14, 3-17.
  • [38] Manciu M., Ruckenstein E., 2004. The polarization model for hydration/double layer interactions: the role of the electrolyte ions. Advances in Colloid and Interface Science 112, 109-128.
  • [39] Manciu M., Ruckenstein E., Calvo O., 2006. Polarization model for poorly-organized interfacial water: Hydration forces between silica surfaces. Advances in Colloid and Interface Science 127, 29-42.
  • [40] Malandrini H., Clauss F., Partyka S., Douillard J.M., 1997. Interactions between talc particles and water and organic solvents. Journal of Colloid and Interface Science 194, 183-193.
  • [41] Murray H.H., 2000. Traditional and new application for kaolin, smectite, and palygorskite: a general overview. Appllied Clay Science 17, 207-221.
  • [42] Ma X., Pawlik M., 2007. Role of background ions in guar gum adsorption on oxide minerals and kaolinite. Journal of Colloid and Interface Science 313, 440-448.
  • [43] Nickolov Z.S., Miller J.D., 2005. Water structure in aqueous solutions of alkalihalide salts: FTIR spectroscopy of the O-D stretching band. Journal of Colloid and Interface Science 287, 572-580.
  • [44] Nulens K.H.L., Toufar H., Janssens G.O.A., Schoonheydt R.A., Johnston C.T., 1998. Clay minerals and clay mineral- water interactions: a combined EEM-Monte Carlo study. [In:] Yamagishi A., Aramata A., Taniguchi M. (Eds.), The Latest Frontiers of the Clay Chemistry. Proceedings of the Sapporo Conference on the Chemistry of Clays and Clay Minerals, 1996. The Smectite Forum of Japan, Sendai, 116-133.
  • [45] Parsons D.F., Ninham B.W., 2011. Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration. Colloids and Surfaces A: Physicochemical and Engineering Aspects 383, 2-9.
  • [46] Pashley R.M., 1982. Hydration forces between mica surfaces in electrolyte solutions. Advances in Colloid and Interface Science 16, 57-62.
  • [47] Pashley R.M., Israelachvili J.N., 1984. Dlvo and hydration forces between mica surfaces in Mg2+, Ca2+, Sr2+, and Ba2+ chloride solutions. Journal of Colloid and Interface Science 97, 446-455.
  • [48] Pouliquen D., Gallois Y., 2001. Physicochemical properties of structured water in human albumin and gammaglobulin solutions. Biochimie 83, 891-898.
  • [49] Peng C., Song S., 2004. Determination of thickness of hydration layers on mica in aqueous solutions by using AFM. Surface Review & Letters 11, 485-489.
  • [50] Peng C., Song S., Lu S., 2005. Determination of the salvation film thichness of dispersed particles with the method of Einstein viscosity equation. Journal of University of Science and Technology Bejing 12,370-375.
  • [51] Ren R., Li Y., Zhang S., Wang J., Luan Z., 2008. Flocculation of kaolin suspension with the adsorption of N, N-disubstituted hydrophobically modified polyacrylamide. Colloids and Surfaces A: Physicochem 317,388-393.
  • [52] Slade P.G., Quirk J.P., Norrish K., 1991. Crystalline swelling of smectite samples in concentrated NaCl solutions in relation to layer charge. Clays and Clay Minerals 39, 234 -238.
  • [53] Schrader M.E., Yariv S., 1990. Wettability of clay minerals. Journal of Colloid and Interface Science 136, 85-94.
  • [54] Song S., Peng C., Gonzalez-Olivares M.A., 2005. Study on hydration layers near nanocale silica dispersed in aqueous solutions through viscosity measurement. Journal of Colloid and Interface Science 287, 114-120.
  • [55] Song S., Lopez-Valdivieso A., Reyes-Bahena J.L., Bermejo-Perez H.I., 2000. Hydrophobic Flocculation of Galena Fines in Aqueous Suspensions. Journal of Colloid and Interface Science 227, 272-281.
  • [56] Solc R., Gerzabek M.H., Lischka H., Tunega D., 2011. Wettability of kaolinite (001) surfaces - Molecular dynamic study. Geoderma 169, 47-54.
  • [57] Sobolev O., Favre Buivin F., Kemner E., Russina M., Beuneu B., Cuello G.J., Charlet L., 2010. Water-clay surface interaction: A neutron scattering study. Chemical Physics 374, 55-61.
  • [58] Salles F., Beurroies I., Bildstein O., Jullien M., Raynal J., Denoyel R., Damme H.V., 2008. A calorimetric study of mesoscopic swelling and hydration sequence in solid Na-montmorillonite. Applied Clay Science 39, 186-201.
  • [59] Theng B.K.G., 2012. Chapter 1 - The Clay Minerals. Developments in Clay Science 4, 3-45.
  • [60] Turov V.V., Mironyuk I.F., 1998. Adsorption layers of water on the surface of hydrophilic, hydrophobic and mixed silicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects 134, 257-263.
  • [61] Turov V.V., Gunko V.M., Bogatyrev V.M., Zarko V.I., Gorbik S.P., Pakhlov E.M., Leboda R., Shulga O.V., Chuiko A.A., 2005. Structured water in partially dehydrated yeast cells and at partially hydrophobized fumed silica surface. Journal of Colloid and Interface Science 283, 329-343.
  • [62] Valle-Delgadoa J.J., Molina-Bolívar J.A., 2005. Hydration forces between silica surfaces: Experimental dataand predictions from different theories. Chemical Physics 123, 21-33.
  • [63] Valle-Delgado J.J., Molina-Bolívar J.A., Galisteo-González F., Gálvez-Ruiz M.J., 2011. Evidence of hydration forces between proteins. Current Opinion in Colloid & Interface. Science 16 572-578.
  • [64] Verwey E.J.W., Overbeek J.T.G., 1948. Theory of the stability of lyophobic colloids. Elsevier, Amsterdam.
  • [65] Virtanen J.J., Makowski L., Sosnick T.R., Freed K.F., 2010. Modeling the Hydration Layer around Proteins: HyPred. Biophysical Journal 99, 1611-1619.
  • [66] Xia Y., Li J., 2007. Fine coal circuitry considerations in treatment of soft coal with difficult washabilities. Fuel Processing Technology 88, 759-769.
  • [67] Yoon R.H, Vivek S., 1998. Effects of Short-Chain Alcohols and Pyridine on the Hydration Forces Between Silica Surfaces. Journal of Colloid and Interface Science 204, 179-186.
  • [68] Yin X., Gupta V., Du H., Wang X., Miller J.D., 2012. Surface charge and wetting characteristics of layered silicate minerals. Advances in Colloid and Interface Science 179, 43-50.
  • [69] Zheng Y., Zaoui A., 2011. How water and counterions diffuse into the hydrated montmorillonite. Solid State Ionics 203, 80-85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db823f38-d09e-46a1-8750-0206b851cff2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.