PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimating influence of positron range in proton-therapy-beam monitoring with PET

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The application of PET scanners to proton-beam-therapy monitoring is a promising solution to obtain the range of the beam and hence the positions of a Bragg peak - maximum dose deposition point. A proton beam induces nuclear reactions in the tissue, leading to the production of isotopes that emit β+ radiation. This enables the imaging of the density distribution of β+ isotopes produced in the body, allowing the reconstruction of the proton beam range. Moreover, PET detectors may open the possibility for in-beam monitoring, which would offer an opportunity to verify the range during irradiation. PET detectors may also allow positronium imaging, which would be the indicator of the tissue conditions. However, the image of annihilation points does not represent the range of the proton beam. There are several factors influencing the translation from annihilation points to obtain the Bragg peak position. One of them is the kinetic energy of the positron. This energy corresponds to some range of the positron within the tissue. In this manuscript we estimate positron energy and its range and discuss its influence on proton therapy monitoring.
Rocznik
Strony
96--100
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
Bibliografia
  • 1. Parodi K, Yamaya T, Moskal P. Experience and new prospects of PET imaging for ion beam therapy monitoring. Z. Med. Phys. 2023;33:22-34.
  • 2. Durante M, Loeffler J. Charged particles in radiation oncology. Nat Rev Clin Oncol 2010;7:37-43.
  • 3. Graeff C, Volz L, Durante M. Emerging technologies for cancer therapy using accelerated particles. Prog. Part. Nucl. Phys. 2023;131:104046.
  • 4. Durante M, Orecchia R, Loeffler JS. Chargedparticle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol. 2017;14(8):483-95.
  • 5. Nystrom H, Jensen MF, Nystrom PW. Treatment planning for proton therapy: what is needed in the next 10 years? Br J Radiol. 2020;93(1107):20190304.
  • 6. Brzeziński K, Baran J, Borys D, Gajewski J, Chug N, Coussat A, et al. Detection of range shifts in proton beam therapy using the J-PET scanner: a patient simulation study. Phys. Med. Biol. 2023;68:145016.
  • 7. Jäkel O. Physical advantages of particles: protons and light ions. Br J Radiol 2020;93:20190428.
  • 8. Lang K. Towards high sensitivity and highresolution PET scanners: imaging-guided proton therapy and total body imaging. Bio-Algorithms and Med-Systems 2022;18:96-106.
  • 9. Abouzahr F, Cesar JP, Crespo P, Gajda M, Hu Z, Kaye W, et al. The first PET glimpse of a proton FLASH beam. Phys. Med. Biol. 2023;68:125001.
  • 10. Abouzahr F, Cesar JP, Crespo P, Gajda M, Hu Z, Klein K, et al. The first probe of a FLASH proton beam by PET Phys. Med. Biol. 2023;68:235004.
  • 11. Purushothaman S, Kostyleva D, Dendooven P, Haettner E, Geissel H, Schuy C, et al. Quasi-real-time range monitoring by in-beam PET: a case for 15O. Sci Rep 2023;13:18788.
  • 12. Rucinski A, Baran J, Garbacz M, Pawlik-Niedzwiecka M, Moskal P. Plastic scintillator based PET detector technique for proton therapy range monitoring: A Monte Carlo study. 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2018 - Proceedings’ pp. 24-7.
  • 13. Das M, Mryka W, Beyene EY, Parzych S, Sharma S, Stępień E, et al. Estimating the efficiency and purity for detecting annihilation and prompt photons for positronium imaging with J-PET using toy Monte Carlo simulations. Bio-Algorithms and Med-Systems 2023;19:87-95.
  • 14. Moskal P. Positronium imaging. In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Manchester, UK: IEEE Xplore; 2020.
  • 15. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019;64:055017.
  • 16. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv 2021;7:eabh4394.
  • 17. Bass SD, Mariazzi S, Moskal P, Stępień E. Colloquium: Positronium physics and biomedical applications. Rev. Mod. Phys. 2023;95:021002.
  • 18. Moskal P, Stępień EŁ. Positronium as a biomarker of hypoxia. Bio-Algorithms and Med-Systems 2021;17(4):311-9.
  • 19. Shibuya K, Saito H, Nishikido F, Takahashi M, Yamaya T. Oxygen sensing ability of positronium atom for tumor hypoxia imaging. Commun Phys 2020;3:173.
  • 20. Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol 2012;57:R99.
  • 21. Blatt J, Weisskopf V. Theoretical nuclear physics. Verlag: Springer; 2012. 22. Evans RD. The Atomic Nucleus. Montgomery, USA: Krieger Pub Co; 1982.
  • 23. https://wwwnds.iaea.org [Internet]. IAEA. International atomic energy agency, live chart of nuclides [cited: 2023 Dec 03]. Available from: https://wwwnds.iaea.org/relnsd/vcharthtml/VChartHTML.html.
  • 24. http://www.nist.gov [Internet]. National Institute of Standards and Technology [cited: 2023 Sept 30]. Available from: http://www.nist.gov/.
  • 25. Cal-González J, Herraiz JL, España S, Corzo PMG, Vaquero JJ, Desco M, et al. Positron range estimations with PeneloPET. Phys. Med. Biol. 2013;58:5127.
  • 26. Katz L, Penfold AS. Rev. Mod. Phys. 1952;24:28-44.
  • 27. Kertész H, Beyer T, Panin V, Jentzen W, Cal-Gonzalez J, Berger A, et al. Implementation of a Spatially-Variant and Tissue-Dependent Positron Range Correction for PET/CT Imaging. Front. Physiol. 2022;13:818463.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db7e49d5-a6fe-4baa-8da6-716c2e80d6da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.