PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent innovations in solar energy education and research towards sustainable energy development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The essential requirements of our everyday lives are fresh air, pure water, nourishing food, and clean energy in a most sustainable manner. The present review article concisely discusses recent innovations in solar energy education, research, and development toward providing clean and affordable energy and clean water to some extent. This article primarily addresses the Sustainable Development Goal 7 of the United Nations (SDG 7: Affordable and Clean Energy). Over the past few decades, many research activities have been carried out on solar energy conversion and utilization. The deployment of solar energy technologies has been witnessed to combat global warming and the betterment of the planet. Drivers and barriers to implementing solar energy systems from school to master's level through real-time deployments are discussed for further development and innovations. Mainly, expedited solar energy education and research are essential to improve solar energy utilization. The advancements in solar energy education and research towards sustainable energy development and circular economy are highlighted along with further directions required.
Twórcy
  • Department of Mechanical Engineering, SRM Institute of Science and Technology Kattankulathur, Chennai, India
Bibliografia
  • [1] 26th UN Climate Change Conference, (2021). https://ukcop26.org/.
  • [2] R. Ciriminna, F. Meneguzzo, M. Pecoraino, M. Pagliaro, Rethinking solar energy education on the dawn of the solar economy, Renew. Sustain. Energy Rev. 63 (2016) 13–18. https://doi.org/10.1016/j.rser.2016.05.008.
  • [3] A. Ott, L. Broman, K. Blum, A pedagogical approach to solar energy education, Sol. Energy. 173 (2018) 740–743. https://doi.org/10.1016/j.solener.2018.07.060.
  • [4] L. Niamir, O. Ivanova, T. Filatova, A. Voinov, H. Bressers, Demand-side solutions for climate mitigation: Bottom-up drivers of household energy behavior change in the Netherlands and Spain, Energy Res. Soc. Sci. 62 (2020) 101356. https://doi.org/10.1016/j.erss.2019.101356.
  • [5] E.M. Barhoumi, P.C. Okonkwo, M. Zghaibeh, I. Ben Belgacem, T.A. Alkanhal, A.G. Abo-Khalil, I. Tlili, Renewable energy resources and workforce case study Saudi Arabia: review and recommendations, J. Therm. Anal. Calorim. 141 (2020) 221–230. https://doi.org/10.1007/s10973-019-09189-2.
  • [6] M. Ortega, P. del Río, P. Ruiz, W. Nijs, S. Politis, Analysing the influence of trade, technology learning and policy on the employment prospects of wind and solar energy deployment: The EU case, Renew. Sustain. Energy Rev. 122 (2020) 109657. https://doi.org/10.1016/j.rser.2019.109657.
  • [7] A. Elia, M. Kamidelivand, F. Rogan, B. Ó Gallachóir, Impacts of innovation on renewable Energy technology cost reductions, Renew. Sustain. Energy Rev. 138 (2021) 110488. https://doi.org/10.1016/j.rser.2020.110488.
  • [8] O. Kaya, A.M. Klepacka, W.J. Florkowski, The role of personal and environmental factors in rural homeowner decision to insulate; an example from Poland, Renew. Sustain. Energy Rev. 150 (2021) 111474. https://doi.org/10.1016/j.rser.2021.111474.
  • [9] Y.T. Wassie, M.M. Rannestad, M.S. Adaramola, Determinants of household energy choices in rural sub-Saharan Africa: An example from southern Ethiopia, Energy. 221 (2021) 119785. https://doi.org/10.1016/j.energy.2021.119785.
  • [10] S. Kolosok, Y. Bilan, T. Vasylieva, A. Wojciechowski, M. Morawski, A scoping review of renewable energy, sustainability and the environment, Energies. 14 (2021) 4490. https://doi.org/10.3390/en14154490.
  • [11] L.F. Hirt, M. Sahakian, E. Trutnevyte, What socio-technical regimes foster solar energy champions? Analysing uneven photovoltaic diffusion at a subnational level in Switzerland, Energy Res. Soc. Sci. 74 (2021) 101976. https://doi.org/10.1016/j.erss.2021.101976.
  • [12] M. Uriona-Maldonado, T. Caliari, L.H. de Souza Costa, C.R. Vaz, The diffusion of solar photovoltaics in brazil: A technological innovation system approach, in: Smart Innov. Syst. Technol., 2021: pp. 377–385. https://doi.org/10.1007/978-3-030-55374-6_37.
  • [13] M. Victoria, N. Haegel, I.M. Peters, R. Sinton, A. Jäger-Waldau, C. del Cañizo, C. Breyer, M. Stocks, A. Blakers, I. Kaizuka, K. Komoto, A. Smets, Solar photovoltaics is ready to power a sustainable future, Joule. 5 (2021) 1041–1056. https://doi.org/10.1016/j.joule.2021.03.005.
  • [14] Q. Zhang, L. Suresh, Q. Liang, Y. Zhang, L. Yang, N. Paul, S.C. Tan, Emerging Technologies for Green Energy Conversion and Storage, Adv. Sustain. Syst. 5 (2021) 2000152. https://doi.org/10.1002/adsu.202000152.
  • [15] M. Temiz, I. Dincer, Design and analysis of nuclear and solar-based energy, food, fuel, and water production system for an indigenous community, J. Clean. Prod. 314 (2021) 127890. https://doi.org/10.1016/j.jclepro.2021.127890.
  • [16] K. Zaman, A.R.A. Aziz, S. Sriyanto, Sasmoko, Y. Indrianti, H. Jambari, The role of solar energy demand in the relationship between carbon pricing and environmental degradation: A blessing in disguise, J. Public Aff. (2021). https://doi.org/10.1002/pa.2702.
  • [17] I. Ari, M. Koc, Philanthropic-crowdfunding-partnership: A proof-of-concept study for sustainable financing in low-carbon energy transitions, Energy. 222 (2021) 119925. https://doi.org/10.1016/j.energy.2021.119925.
  • [18] D. Drosos, G.L. Kyriakopoulos, S. Ntanos, A. Parissi, School managers perceptions towards Energy efficiency and renewable energy sources, Int. J. Renew. Energy Dev. 10 (2021) 573–584. https://doi.org/10.14710/ijred.2021.36704.
  • [19] D. Hirsh Bar Gai, E. Shittu, D. Attanasio, C. Weigelt, S. LeBlanc, P. Dehghanian, S. Sklar, Examining community solar programs to understand accessibility and investment: Evidence from the U.S., Energy Policy. 159 (2021) 112600. https://doi.org/10.1016/j.enpol.2021.112600.
  • [20] X.J. Luo, L.O. Oyedele, Assessment and optimisation of life cycle environment, economy and energy for building retrofitting, Energy Sustain. Dev. 65 (2021) 77–100. https://doi.org/10.1016/j.esd.2021.10.002.
  • [21] L. Guo, J. Kors, Design of a laboratory scale solar microgrid cyber-physical system for education, Electron. 10 (2021) 1562. https://doi.org/10.3390/electronics10131562.
  • [22] E. Harrington, A.W. Wambugu, Beyond technical standards: Creating an ecosystem for quality and repair in Kenya’s off-grid solar sector, Energy Res. Soc. Sci. 77 (2021) 102101. https://doi.org/10.1016/j.erss.2021.102101.
  • [23] E. Gervais, S. Shammugam, L. Friedrich, T. Schlegl, Raw material needs for the large-scale deployment of photovoltaics – Effects of innovation-driven roadmaps on material constraints until 2050, Renew. Sustain. Energy Rev. 137 (2021) 110589. https://doi.org/10.1016/j.rser.2020.110589.
  • [24] I.M. Peters, C. Breyer, S.A. Jaffer, S. Kurtz, T. Reindl, R. Sinton, M. Vetter, The role of batteries in meeting the PV terawatt challenge, Joule. 5 (2021) 1353–1370. https://doi.org/10.1016/j.joule.2021.03.023.
  • [25] M. Ghasri, A. Ardeshiri, N.J. Ekins-Daukes, T. Rashidi, Willingness to pay for photovoltaic solar cells equipped electric vehicles, Transp. Res. Part C Emerg. Technol. 133 (2021) 103433. https://doi.org/10.1016/j.trc.2021.103433.
  • [26] V.K. Chauhan, S.K. Shukla, J.V. Tirkey, P.K. Singh Rathore, A comprehensive review of direct solar desalination techniques and its advancements, J. Clean. Prod. 284 (2021) 124719. https://doi.org/10.1016/j.jclepro.2020.124719.
  • [27] X. Xu, S. Ozden, N. Bizmark, C.B. Arnold, S.S. Datta, R.D. Priestley, A Bioinspired Elastic Hydrogel for Solar-Driven Water Purification, Adv. Mater. 33 (2021) 2007833. https://doi.org/10.1002/adma.202007833.
  • [28] R.K. Goel, C.S. Yadav, S. Vishnoi, R. Rastogi, Smart agriculture – Urgent need of the day in developing countries, Sustain. Comput. Informatics Syst. 30 (2021) 100512. https://doi.org/10.1016/j.suscom.2021.100512.
  • [29] R. Senthil, S. Yuvaraj, A comprehensive review on bioinspired solar photovoltaic cells, Int. J. Energy Res. 43 (2019) 1068–1081. https://doi.org/10.1002/er.4255.
  • [30] 2021, Scopus, (n.d.). https://www.scopus.com/.
  • [31] A. Karabulut, E. Gedik, A. Keçebaş, M.A. Alkan, An investigation on renewable energy education at the university level in Turkey, Renew. Energy. 36 (2011) 1293–1297. https://doi.org/10.1016/j.renene.2010.10.006.
  • [32] R.C. Buschmann, C. Prettner, Solar info center freiburg (germany) an energy efficient name card for clean energy development, Int. J. Sustain. Build. Technol. Urban Dev. 2 (2011) 191–194. https://doi.org/10.5390/SUSB.2011.2.3.191.
  • [33] M.J. Pasqualetti, S. Haag, A solar economy in the American Southwest: Critical next steps, Energy Policy. 39 (2011) 887–893. https://doi.org/10.1016/j.enpol.2010.11.013.
  • [34] K. Mahmud, S. Morsalin, M.I. Khan, Design and Fabrication of an Automated Solar Boat, Int. J. Adv. Sci. Technol. 64 (2014) 31–42. https://doi.org/10.14257/ijast.2014.64.04.
  • [35] C.G. Kuo, C.C. Chang, Building professional competencies indices in the solar energy industry for the engineering education curriculum, Int. J. Photoenergy. 2014 (2014) 1–6. https://doi.org/10.1155/2014/963291.
  • [36] I. Navarro, Á. Gutiérrez, C. Montero, E. Rodríguez-Ubiñas, E. Matallanas, M. Castillo-Cagigal, M. Porteros, J. Solórzano, E. Caamaño-Martín, M.A. Egido, J.M. Páez, S. Vega, Experiences and methodology in a multidisciplinary energy and architecture competition: Solar Decathlon Europe 2012, Energy Build. 83 (2014) 3–9. https://doi.org/10.1016/j.enbuild.2014.03.073.
  • [37] C.G. Kuo, C.C. Chang, C.C. Huang, Constructing employability indicators for enhancing the effectiveness of engineering education for the solar industry, Int. J. Photoenergy. 2014 (2014) 1–11. https://doi.org/10.1155/2014/491353.
  • [38] S. Karytsas, H. Theodoropoulou, Socioeconomic and demographic factors that influence publics’ awareness on the different forms of renewable energy sources, Renew. Energy. 71 (2014) 480–485. https://doi.org/10.1016/j.renene.2014.05.059.
  • [39] M. Torres-Ramírez, B. García-Domingo, J. Aguilera, J. De La Casa, Video-sharing educational tool applied to the teaching in renewable energy subjects, Comput. Educ. 73 (2014) 160–177. https://doi.org/10.1016/j.compedu.2013.12.014.
  • [40] P. Criqui, S. Mima, P. Menanteau, A. Kitous, Mitigation strategies and energy technology learning: An assessment with the POLES model, Technol. Forecast. Soc. Change. 90 (2015) 119–136. https://doi.org/10.1016/j.techfore.2014.05.005.
  • [41] J. Buelin, A.C. Clark, J. V. Ernst, Engineering’s grand challenges: Priorities and integration recommendations for technology education curriculum development, J. Technol. Educ. 28 (2016) 37–52. https://doi.org/10.21061/jte.v28i1.a.3.
  • [42] A. Faza, M. Batarseh, W. Abu-Elhaija, Upgrading power and energy engineering curricula in Jordanian universities: A case study at PSUT, Int. J. Electr. Eng. Educ. 54 (2017) 57–81. https://doi.org/10.1177/0020720916673648.
  • [43] L. Neij, E. Heiskanen, L. Strupeit, The deployment of new energy technologies and the need for local learning, Energy Policy. 101 (2017) 274–283. https://doi.org/10.1016/j.enpol.2016.11.029.
  • [44] A.S.O. Ogunjuyigbe, T.R. Ayodele, E.E. Ekoh, Development of a MATLAB based Educational Software (UISOLAR) For Solar Application, Energy Eng. J. Assoc. Energy Eng. 114 (2017) 33–54. https://doi.org/10.1080/01998595.2017.11882308.
  • [45] N.A. Jefry, N.A. Zambri, Suitability of demand response program equipped with solar energy in UTHM, Indones. J. Electr. Eng. Comput. Sci. 6 (2017) 294–300. https://doi.org/10.11591/ijeecs.v6.i2.pp294-300.
  • [46] A.M. Manokar, D.P. Winston, A.E. Kabeel, R. Sathyamurthy, Sustainable fresh water and power production by integrating PV panel in inclined solar still, J. Clean. Prod. 172 (2018) 2711–2719. https://doi.org/10.1016/j.jclepro.2017.11.140.
  • [47] A. Alqahtani, M. Alsaffar, M. El-Sayed, H. Behbehani, A photovoltaic system experiment in a laboratory environment, Int. J. Electr. Eng. Educ. 55 (2018) 31–43. https://doi.org/10.1177/0020720917750956.
  • [48] S.A. Nathan, F. Loxsom, A Sustainable Energy Laboratory Course for Non-Science Majors, Phys. Teach. 54 (2016) 420–422. https://doi.org/10.1119/1.4962779.
  • [49] A.S. Leger, A multidisciplinary undergraduate alternative energy engineering course, IEEE Trans. Educ. 62 (2019) 34–39. https://doi.org/10.1109/TE.2018.2844811.
  • [50] M. Thürer, I. Tomašević, M. Stevenson, T. Qu, D. Huisingh, A systematic review of the literaturę on integrating sustainability into engineering curricula, J. Clean. Prod. 181 (2018) 608–617. https://doi.org/10.1016/j.jclepro.2017.12.130.
  • [51] J. da S. Pereira, D.A. Ribeiro, F.H. Lucena, J. Urbanetz Júnior, Assessment of the potential implementation of solar energy generation in state schools in Curitiba/PR, Brazilian Arch. Biol. Technol. 61 (2018). https://doi.org/10.1590/1678-4324-smart-2018000300.
  • [52] L. Ding, F. Zhang, J. Shuai, How do chinese residents expect of government subsidies on solar photovoltaic power generation?-a case of Wuhan, China, Energies. 11 (2018) 228. https://doi.org/10.3390/en11010228.
  • [53] D. Asante, Z. He, E. Mintah Ampaw, S. Gyamerah, M. Ankrah Twumasi, E. Opoku-Mensah, F. Kyere, B. Asante, E. Afia Akyia, Renewable energy technology transition among small-and-medium scale firms in Ghana, Renew. Energy. 178 (2021) 549–559. https://doi.org/10.1016/j.renene.2021.06.111.
  • [54] B. Urban, J. Maphalala, Solar turtle: searching for the game changer, Emerald Emerg. Mark. Case Stud. 9 (2019) 1–20. https://doi.org/10.1108/EEMCS-02-2019-0032.
  • [55] K.K. Kapoor, Y.K. Dwivedi, Sustainable consumption from the consumer’s perspective: Antecedents of solar innovation adoption, Resour. Conserv. Recycl. 152 (2020) 104501. https://doi.org/10.1016/j.resconrec.2019.104501.
  • [56] P.C. Sun, H.M. Wang, H.L. Huang, C.W. Ho, Consumer attitude and purchase intention toward rooftop photovoltaic installation: The roles of personal trait, psychological benefit, and government incentives, Energy Environ. 31 (2020) 21–39. https://doi.org/10.1177/0958305X17754278.
  • [57] J. Abreu, N. Wingartz, N. Hardy, New trends in solar: A comparative study assessing the attitudes towards the adoption of rooftop PV, Energy Policy. 128 (2019) 347–363. https://doi.org/10.1016/j.enpol.2018.12.038.
  • [58] C. O’Flynn, V. Seymour, J. Crawshaw, T. Parrott, C. Reeby, S.R.P. Silva, The road to net zero: A case study of innovative technologies and policy changes used at a medium-sized university to achieve Czero by 2030, Sustain. 13 (2021) 9954. https://doi.org/10.3390/su13179954.
  • [59] S.A. Malik, A.R. Ayop, Solar energy technology: Knowledge, awareness, and acceptance of B40 households in one district of Malaysia towards government initiatives, Technol. Soc. 63 (2020) 101416. https://doi.org/10.1016/j.techsoc.2020.101416.
  • [60] H. Marx, S. Forin, M. Finkbeiner, Organizational life cycle assessment of a service providing SME for renewable energy projects (PV and wind) in the United Kingdom, Sustain. 12 (2020) 4475. https://doi.org/10.3390/su12114475.
  • [61] W. Strielkowski, T. Veinbender, M. Tvaronavičienė, N. Lace, Economic efficiency and energy security of smart cities, Econ. Res. Istraz. 33 (2020) 788–803. https://doi.org/10.1080/1331677X.2020.1734854.
  • [62] A. Hazarika, S. Poddar, M.M. Nasralla, H. Rahaman, Area and energy efficient shift and accumulator unit for object detection in IoT applications, Alexandria Eng. J. 61 (2022) 795–809. https://doi.org/10.1016/j.aej.2021.04.099.
  • [63] J. Liu, B. Gong, Q. Wang, A trusted proof mechanism of data source for smart city, Futur. Gener. Comput. Syst. 128 (2022) 349–364. https://doi.org/10.1016/j.future.2021.10.012.
  • [64] A. Malhotra, T.S. Schmidt, J. Huenteler, The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies, Technol. Forecast. Soc. Change. 146 (2019) 464–487. https://doi.org/10.1016/j.techfore.2019.04.018.
  • [65] X. Gao, V. Rai, Local demand-pull policy and energy innovation: Evidence from the solar photovoltaic market in China, Energy Policy. 128 (2019) 364–376. https://doi.org/10.1016/j.enpol.2018.12.056.
  • [66] Y.H. Cho, A. Shaygan, T.U. Daim, Energy technology adoption: Case of solar photovoltaic in the Pacific Northwest USA, Sustain. Energy Technol. Assessments. 34 (2019) 187–199. https://doi.org/10.1016/j.seta.2019.05.011.
  • [67] J.M. Delgado-Sanchez, I. Lillo-Bravo, Learning solar energy inspired by nature: biomimetic engineering cases, Eur. J. Eng. Educ. 46 (2021) 1058–1075. https://doi.org/10.1080/03043797.2021.1988906.
  • [68] N. Ali, E.L. Gyllye, C. Duanmu, Y. Yang, A. Khan, F. Ali, M. Bilal, H.M.N. Iqbal, Robust bioinspired surfaces and their exploitation for petroleum hydrocarbon remediation, Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-16525-3.
  • [69] Y. Dong, F. Wang, Y. Zhang, X. Shi, A. Zhang, Y. Shuai, Experimental and numerical study on flow characteristic and thermal performance of macro-capsules phase change material with biomimetic oval structure, Energy. 238 (2022) 121830. https://doi.org/10.1016/j.energy.2021.121830.
  • [70] X.T. Yan, Y.K. Jin, X.M. Chen, C. Zhang, C.L. Hao, Z.K. Wang, Nature-inspired surface topography: design and function, Sci. China Physics, Mech. Astron. 63 (2020) 224601. https://doi.org/10.1007/s11433-019-9643-0.
  • [71] L. Guo, M. Vengalil, N.M.M. Abdul, K. Wang, Design and implementation of virtual laboratory for a microgrid with renewable energy sources, Comput. Appl. Eng. Educ. (2021). https://doi.org/10.1002/cae.22459.
  • [72] J.M. Han, E.S. Choi, A. Malkawi, CoolVox: Advanced 3D convolutional neural network models for predicting solar radiation on building facades, Build. Simul. (2021). https://doi.org/10.1007/s12273-021-0837-0.
  • [73] K. Rajesh, C. Sivapragasam, S. Rajendran, Teaching Solar and Wind Energy Conversion Course for Engineering Students: A Novel Approach, in: 2021 Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE 2021, IEEE, 2021: pp. 826–831. https://doi.org/10.1109/ICACITE51222.2021.9404589.
  • [74] I. Abada, M. Othmani, L. Tatry, An innovative approach for the optimal sizing of mini-grids in rural areas integrating the demand, the supply, and the grid, Renew. Sustain. Energy Rev. 146 (2021) 111117. https://doi.org/10.1016/j.rser.2021.111117.
  • [75] R.G. Cong, An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization, Renew. Sustain. Energy Rev. 17 (2013) 94–103. https://doi.org/10.1016/j.rser.2012.09.005.
  • [76] S. Ntanos, G. Kyriakopoulos, M. Chalikias, G. Arabatzis, M. Skordoulis, Public perceptions and willingness to pay for renewable energy: A case study from Greece, Sustain. 10 (2018) 687. https://doi.org/10.3390/su10030687.
  • [77] M. Casini, Active dynamic windows for buildings: A review, Renew. Energy. 119 (2018) 923–934. ttps://doi.org/10.1016/j.renene.2017.12.049.
  • [78] Z. Csernovszky, A. Horváth, Organic solar cells and physics education, Eur. J. Phys. 39 (2018) 045804. https://doi.org/10.1088/1361-6404/aab5d1.
  • [79] L. Hancock, N. Ralph, M. Armand, D. Macfarlane, M. Forsyth, In the lab: New ethical and supply chain protocols for battery and solar alternative energy laboratory research policy and practice, J. Clean. Prod. 187 (2018) 485–495. https://doi.org/10.1016/j.jclepro.2018.03.097.
  • [80] S.I. Chien, C. Su, C.C. Chou, W.R. Li, Visual Observation and Practical Application of Dye Sensitized Solar Cells in High School Energy Education, J. Chem. Educ. 95 (2018) 1167–1172. https://doi.org/10.1021/acs.jchemed.7b00484.
  • [81] A. Renny, C. Yang, R. Anthony, R.R. Lunt, Luminescent Solar Concentrator Paintings: Connecting Art and Energy, J. Chem. Educ. 95 (2018) 1161–1166. https://doi.org/10.1021/acs.jchemed.7b00742.
  • [82] E. Aydin, P. Eichholtz, E. Yönder, The economics of residential solar water heaters in emerging economies: The case of Turkey, Energy Econ. 75 (2018) 285–299. https://doi.org/10.1016/j.eneco.2018.08.001.
  • [83] X. Lemaire, Solar home systems and solar lanterns in rural areas of the Global South: What impact?, Wiley Interdiscip. Rev. Energy Environ. 7 (2018). https://doi.org/10.1002/wene.301.
  • [84] H. Holtorf, E. Brudler, H. Torío, Development of a holistic method for assessing success of renewable energy study programs, Sol. Energy. 173 (2018) 209–214. https://doi.org/10.1016/j.solener.2018.07.063.
  • [85] J.A. Carballo, J. Bonilla, L. Roca, M. Berenguel, New low-cost solar tracking system based on open source hardware for educational purposes, Sol. Energy. 174 (2018) 826–836. https://doi.org/10.1016/j.solener.2018.09.064.
  • [86] D.D. Guta, Determinants of household adoption of solar energy technology in rural Ethiopia, J. Clean. Prod. 204 (2018) 193–204. https://doi.org/10.1016/j.jclepro.2018.09.016.
  • [87] Y. Yu, Q.W. Pan, L.W. Wang, A small-scale silica gel-water adsorption system for domestic air conditioning and water heating by the recovery of solar energy, Front. Energy. 14 (2020) 328–336. https://doi.org/10.1007/s11708-019-0623-1.
  • [88] B.G. Rebelatto, A. Lange Salvia, G. Reginatto, R.C. Daneli, L.L. Brandli, Energy efficiency actions at a Brazilian university and their contribution to sustainable development Goal 7, Int. J. Sustain. High. Educ. 20 (2019) 842–855. https://doi.org/10.1108/IJSHE-01-2019-0023.
  • [89] P.J. Ramísio, L.M.C. Pinto, N. Gouveia, H. Costa, D. Arezes, Sustainability Strategy in Higher Education Institutions: Lessons learned from a nine-year case study, J. Clean. Prod. 222 (2019) 300–309. https://doi.org/10.1016/j.jclepro.2019.02.257.
  • [90] A. Abu-Rayash, I. Dincer, Sustainability assessment of energy systems: A novel integrated model, J. Clean. Prod. 212 (2019) 1098–1116. https://doi.org/10.1016/j.jclepro.2018.12.090.
  • [91] Z. Zhao, B. Yang, Z. Xing, Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system, Front. Energy. 13 (2019) 193–203. https://doi.org/10.1007/s11708-019-0608-0.
  • [92] K. Handayani, Y. Krozer, T. Filatova, From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning, Energy Policy. 127 (2019) 134–146. https://doi.org/10.1016/j.enpol.2018.11.045.
  • [93] A. Assali, T. Khatib, A. Najjar, Renewable energy awareness among future generation of Palestine, Renew. Energy. 136 (2019) 254–263. https://doi.org/10.1016/j.renene.2019.01.007.
  • [94] R. Sharma, D. Choudhary, P. Kumar, J. Venkateswaran, C.S. Solanki, Do solar study lamps help children study at night? Evidence from rural India, Energy Sustain. Dev. 50 (2019) 109–116. https://doi.org/10.1016/j.esd.2019.03.005.
  • [95] Z. Liu, D. Wu, B.J. He, Q. Wang, H. Yu, W. Ma, G. Jin, Evaluating potentials of passive solar heating renovation for the energy poverty alleviation of plateau areas in developing countries: A case study in rural Qinghai-Tibet Plateau, China, Sol. Energy. 187 (2019) 95–107. https://doi.org/10.1016/j.solener.2019.05.049.
  • [96] Y. Gu, H. Wang, J. Xu, Y. Wang, X. Wang, Z.P. Robinson, F. Li, J. Wu, J. Tan, X. Zhi, Quantification of interlinked environmental footprints on a sustainable university campus: A nexus analysis perspective, Appl. Energy. 246 (2019) 65–76. https://doi.org/10.1016/j.apenergy.2019.04.015.
  • [97] J. Emmons Allison, K. McCrory, I. Oxnevad, Closing the renewable energy gender gap in the United States and Canada: The role of women’s professional networking, Energy Res. Soc. Sci. 55 (2019) 35–45. https://doi.org/10.1016/j.erss.2019.03.011.
  • [98] P. Cui, D. Wei, J. Ji, H. Huang, E. Jia, S. Dou, T. Wang, W. Wang, M. Li, Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%, Nat. Energy. 4 (2019) 150–159. https://doi.org/10.1038/s41560-018-0324-8.
  • [99] K.K. Zander, G. Simpson, S. Mathew, R. Nepal, S.T. Garnett, Preferences for and potential impacts of financial incentives to install residential rooftop solar photovoltaic systems in Australia, J. Clean. Prod. 230 (2019) 328–338. https://doi.org/10.1016/j.jclepro.2019.05.133.
  • [100] S. Tembhurne, F. Nandjou, S. Haussener, A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation, Nat. Energy. 4 (2019) 399–407. https://doi.org/10.1038/s41560-019-0373-7.
  • [101] C. Zuo, A.D. Scully, D. Vak, W. Tan, X. Jiao, C.R. McNeill, D. Angmo, L. Ding, M. Gao, Self-Assembled 2D Perovskite Layers for Efficient Printable Solar Cells, Adv. Energy Mater. 9 (2019) 1803258. https://doi.org/10.1002/aenm.201803258.
  • [102] G. Liu, J. Jia, K. Zhang, X. Jia, Q. Yin, W. Zhong, L. Li, F. Huang, Y. Cao, 15% Efficiency Tandem Organic Solar Cell Based on a Novel Highly Efficient Wide-Bandgap Nonfullerene Acceptor with Low Energy Loss, Adv. Energy Mater. 9 (2019) 1803657. https://doi.org/10.1002/aenm.201803657.
  • [103] F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells, Energy Environ. Sci. 12 (2019) 518–549. https://doi.org/10.1039/c8ee03025a.
  • [104] M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production, Energy Environ. Sci. 12 (2019) 841–864. https://doi.org/10.1039/c8ee01146j.
  • [105] W. Leal Filho, A.L. Salvia, A. do Paço, R. Anholon, O.L. Gonçalves Quelhas, I.S. Rampasso, A. Ng, A.L. Balogun, B. Kondev, L.L. Brandli, A comparative study of approaches towards energy efficiency and renewable energy use at higher education institutions, J. Clean. Prod. 237 (2019) 117728. https://doi.org/10.1016/j.jclepro.2019.117728.
  • [106] M. Mohammadalizadehkorde, R. Weaver, Quantifying potential savings from sustainable energy projects at a large public university: An energy efficiency assessment for texas state university, Sustain. Energy Technol. Assessments. 37 (2020) 100570. https://doi.org/10.1016/j.seta.2019.100570.
  • [107] M.F. Ferreira, M.A.V. Freitas, N.F. da Silva, A.F. da Silva, L.R.L. da Paz, Insertion of photovoltaic solar systems in technological education institutions in Brazil: Teacher perceptions concerning contributions towards sustainable development, Sustain. 12 (2020) 1292. https://doi.org/10.3390/su12041292.
  • [108] S.B. Subramaniam, R. Senthil, Heat transfer enhancement of concentrated solar absorber using hollow cylindrical fins filled with phase change material, Int. J. Hydrogen Energy. 46 (2021) 22344–22355. https://doi.org/10.1016/j.ijhydene.2021.04.061.
  • [109] R. Senthil, A.P. Nishanth, Optical and thermal performance analysis of solar parabolic concentrator, Int. J. Mech. Prod. Eng. Res. Dev. 7 (2017) 367–374. https://doi.org/10.24247/ijmperdoct201737.
  • [110] R. Senthil, M. Cheralathan, Enhancement of heat absorption rate of direct absorption solar collector using graphite nanofluid, Int. J. ChemTech Res. 9 (2016) 303–308.
  • [111] L. Haelg, M. Waelchli, T.S. Schmidt, Supporting energy technology deployment while avoiding unintended technological lock-in: A policy design perspective, Environ. Res. Lett. 13 (2018) 104011. https://doi.org/10.1088/1748-9326/aae161.
  • [112] A.A. Adenle, Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals, in: Energy Policy, 2020: p. 111180. https://doi.org/10.1016/j.enpol.2019.111180.
  • [113] M. Xu, P. Xie, B.C. Xie, Study of China’s optimal solar photovoltaic power development path to 2050, Resour. Policy. 65 (2020) 101541. https://doi.org/10.1016/j.resourpol.2019.101541.
  • [114] A. Diallo, R.K. Moussa, The effects of solar home system on welfare in off-grid areas: Evidence from Côte d’Ivoire, Energy. 194 (2020) 116835. https://doi.org/10.1016/j.energy.2019.116835.
  • [115] K.K. Zander, G. Simpson, S. Mathew, R. Nepal, S.T. Garnett, Preferences for and potential impacts of financial incentives to install residential rooftop solar photovoltaic systems in Australia, J. Clean. Prod. 230 (2019) 328–338. https://doi.org/10.1016/j.jclepro.2019.05.133.
  • [116] P. Yadav, P.J. Davies, S.A. Sarkodie, The prospects of decentralised solar energy home systems in rural communities: User experience, determinants, and impact of free solar power on the energy poverty cycle, Energy Strateg. Rev. 26 (2019) 100424. https://doi.org/10.1016/j.esr.2019.100424.
  • [117] C. Tregambi, M. Troiano, F. Montagnaro, R. Solimene, P. Salatino, Fluidized Beds for Concentrated Solar Thermal Technologies—A Review, Front. Energy Res. 9 (2021). https://doi.org/10.3389/fenrg.2021.618421.
  • [118] H.M. Mahmudul, M.G. Rasul, D. Akbar, R. Narayanan, M. Mofijur, A comprehensive review of the recent development and challenges of a solar-assisted biodigester system, Sci. Total Environ. 753 (2021) 141920. https://doi.org/10.1016/j.scitotenv.2020.141920.
  • [119] H. Vazini Modabber, M.H. Khoshgoftar Manesh, 4E dynamic analysis of a water-power cogeneration plant integrated with solar parabolic trough collector and absorption chiller, Therm. Sci. Eng. Prog. 21 (2021) 100785. https://doi.org/10.1016/j.tsep.2020.100785.
  • [120] H. Xiang, P. Ch, M.A. Nawaz, S. Chupradit, A. Fatima, M. Sadiq, Integration and economic viability of fueling the future with green hydrogen: An integration of its determinants from renewable economics, Int. J. Hydrogen Energy. 46 (2021) 38145–38162. https://doi.org/10.1016/j.ijhydene.2021.09.067.
  • [121] X. Zhang, W. Zhang, W. Yang, W. Liu, F. Min, S.S. Mao, J. Xie, Catalyst-coated proton exchange membranę for hydrogen production with high pressure water electrolysis, Appl. Phys. Lett. 119 (2021) 1ENG. https://doi.org/10.1063/5.0060150.
  • [122] D. Rodríguez-Gracia, J.A. Piedra-Fernández, L. Iribarne, J. Criado, R. Ayala, J. Alonso-Montesinos, C.U.M. de las Mercedes, Microservices and machine learning algorithms for adaptive green buildings, Sustain. 11 (2019) 4320. https://doi.org/10.3390/su11164320.
  • [123] R. Srikanth, M. Venkatesan, Design and modelling of hybrid fuel cell and solar-based electric vehicle, Int. J. Veh. Auton. Syst. 15 (2020) 225–240. https://doi.org/10.1504/IJVAS.2020.116445.
  • [124] S. Purohit, G. Brooks, M.A. Rhamdhani, M.I. Pownceby, Evaluation of concentrated solar thermal Energy for iron ore agglomeration, J. Clean. Prod. 317 (2021) 128313. https://doi.org/10.1016/j.jclepro.2021.128313.
  • [125] I.A. Gondal, Microbial electrolysis cells and power-to-gas technology – A novel onsite industrial wastewater treatment and CCU arrangement, Water Environ. J. 35 (2021) 1376–1383. https://doi.org/10.1111/wej.12721.
  • [126] J.F. Ituna-Yudonago, Y.R. Galindo-Luna, O. García-Valladares, R.B. y. Brown, R. Shankar, J. Ibarra-Bahena, Review of solar-thermal collectors powered autoclave for the sterilization of medical equipment, Alexandria Eng. J. 60 (2021) 5401–5417. https://doi.org/10.1016/j.aej.2021.04.007.
  • [127] L. Zhao, B. Bhatia, L. Zhang, E. Strobach, A. Leroy, M.K. Yadav, S. Yang, T.A. Cooper, L.A. Weinstein, A. Modi, S.B. Kedare, G. Chen, E.N. Wang, A Passive High-Temperature High-Pressure Solar Steam Generator for Medical Sterilization, Joule. 4 (2020) 2733–2745. https://doi.org/10.1016/j.joule.2020.10.007.
  • [128] Y. Fang, S. Memon, J. Peng, M. Tyrer, T. Ming, Solar thermal performance of two innovative configurations of air-vacuum layered triple glazed windows, Renew. Energy. 150 (2020) 167–175. https://doi.org/10.1016/j.renene.2019.12.115.
  • [129] G. Chen, Y. Li, M. Bick, J. Chen, Smart Textiles for Electricity Generation, Chem. Rev. 120 (2020) 3668–3720. https://doi.org/10.1021/acs.chemrev.9b00821.
  • [130] R.A. Gonocruz, R. Nakamura, K. Yoshino, M. Homma, T. Doi, Y. Yoshida, A. Tani, Analysis of the rice yield under an agrivoltaic system: A case study in Japan, Environ. - MDPI. 8 (2021) 65. https://doi.org/10.3390/environments8070065.
  • [131] M.H. Riaz, H. Imran, R. Younas, N.Z. Butt, The optimization of vertical bifacial photovoltaic farms for efficient agrivoltaic systems, Sol. Energy. 230 (2021) 1004–1012. https://doi.org/10.1016/j.solener.2021.10.051.
  • [132] M.A. Hannan, A.Q. Al-Shetwi, R.A. Begum, P. Jern Ker, S.A. Rahman, M. Mansor, M.S. Mia, K.M. Muttaqi, Z.Y. Dong, Impact assessment of battery energy storage systems towards achieving sustainable development goals, J. Energy Storage. 42 (2021) 103040. https://doi.org/10.1016/j.est.2021.103040.
  • [133] A.S. Budiman, S. Anbazhagan, G. Illya, W.J.R. Song, R. Sahay, S.K. Tippabhotla, A.A.O. Tay, Enabling curvable silicon photovoltaics technology using polycarbonate-sandwiched laminate design, Sol. Energy. 220 (2021) 462–472. https://doi.org/10.1016/j.solener.2021.03.021.
  • [134] Y. Dai, Y. Yin, Y. Lu, Strategies to facilitate photovoltaic applications in road structures for Energy harvesting, Energies. 14 (2021) 7097. https://doi.org/10.3390/en14217097.
  • [135] L. Chen, J. Wang, C. Xu, The Application of Solar Photovoltaic Power Generation System in Ships, J. Coast. Res. 94 (2019) 525–529. https://doi.org/10.2112/SI94-104.1.
  • [136] S. Buragohain, K. Mohanty, P. Mahanta, Hybridization of solar photovoltaic and biogas system: Experimental, economic and environmental analysis, Sustain. Energy Technol. Assessments. 45 (2021) 101050. https://doi.org/10.1016/j.seta.2021.101050.
  • [137] N. Jones, P. Warren, Innovation and distribution of Solar Home Systems in Bangladesh, Clim. Dev. 13 (2021) 386–398. https://doi.org/10.1080/17565529.2020.1785829.
  • [138] H.K. Salim, R.A. Stewart, O. Sahin, M. Dudley, End-of-life management of solar photovoltaic and battery energy storage systems: A stakeholder survey in Australia, Resour. Conserv. Recycl. 150 (2019) 104444. https://doi.org/10.1016/j.resconrec.2019.104444.
  • [139] C.V. Restrepo, E. Benavides, J.C. Zambrano, V. Moncayo, E. Castro, Hand made solar cells from chlorophyll for teaching in high school energy education, Int. J. Ambient Energy. (2020) 1–7. https://doi.org/10.1080/01430750.2020.1712243.
  • [140] B.R. Entele, Analysis of households’ willingness to pay for a renewable source of electricity service connection: evidence from a double-bounded dichotomous choice survey in rural Ethiopia, Heliyon. 6 (2020) e03332. https://doi.org/10.1016/j.heliyon.2020.e03332.
  • [141] J. Lee, M.M.C. Shepley, Benefits of solar photovoltaic systems for low-income families in social housing of Korea: Renewable energy applications as solutions to energy poverty, J. Build. Eng. 28 (2020) 101016. https://doi.org/10.1016/j.jobe.2019.101016.
  • [142] C. Sharma, A. Jain, Entrepreneurship through start-ups in hill areas using photovoltaic systems, Bull. Electr. Eng. Informatics. 6 (2017) 105–121. https://doi.org/10.11591/eei.v6i2.613.
  • [143] R. Senthil, M. Gupta, S. Makda, The synthesis and production challenges of quantum dot based solar cells, Int. J. Mech. Eng. Technol. 9 (2018) 236–244.
  • [144] U.K. Priya, R. Senthil, A review of the impact of the green landscape interventions on the urban microclimate of tropical areas, Build. Environ. 205 (2021) 108190. https://doi.org/10.1016/j.buildenv.2021.108190.
  • [145] G. Raghav, P.K. Sharma, S. Kumar, R. Maithani, Method of research for solar cookers performance characteristics-Analysis and comparison, Acta Innov. 2021 (2021) 54–66. https://doi.org/10.32933/ActaInnovations.39.6.
  • [146] G. Raghav, P.K. Sharma, S. Kumar, R. Maithani, A. Iung, Q. Mercier, Analysis of solar cooker with thermal storage for remote hilly areas: Determination of heating and cooling characteristic time, Acta Innov. 40 (2021) 5–18. https://doi.org/10.32933/ActaInnovations.40.1.
  • [147] M. Nagpal, R. Maithani, S. Kumar, Energetic & exergetic analysis of a parabolic trough: Concentrated solar power plant, Acta Innov. 40 (2021) 19–30. https://doi.org/10.32933/ActaInnovations.40.2.
  • [148] Q. Zhang, C. Prouty, J.B. Zimmerman, J.R. Mihelcic, More than Target 6.3: A Systems Approach to Rethinking Sustainable Development Goals in a Resource-Scarce World, Engineering. 2 (2016) 481–489. https://doi.org/10.1016/J.ENG.2016.04.010.
  • [149] J. Nan, X. Guo, J. Xiao, X. Li, W. Chen, W. Wu, H. Liu, Y. Wang, M. Wu, G. Wang, Nanoengineering of 2D MXene-Based Materials for Energy Storage Applications, Small. 17 (2021) 1902085. https://doi.org/10.1002/smll.201902085.
  • [150] A.G. Olabi, M.A. Abdelkareem, T. Wilberforce, E.T. Sayed, Application of graphene in energy storage device – A review, Renew. Sustain. Energy Rev. 135 (2021) 110026. https://doi.org/10.1016/j.rser.2020.110026.
  • [151] R. Senthil, Effect of charging of phase change material in vertical and horizontal rectangular enclosures in a concentrated solar receiver, Case Stud. Therm. Eng. 21 (2020) 100653. https://doi.org/10.1016/j.csite.2020.100653.
  • [152] R. Senthil, S. Prabhu, M. Cheralathan, Effect of heat transfer fluid input parameters on thermal output of parabolic dish solar receiver using design of experiment techniques, Int. J. Mech. Eng. Technol. 8 (2017) 1148–1156.
  • [153] S. Zhang, D. Feng, L. Shi, L. Wang, Y. Jin, L. Tian, Z. Li, G. Wang, L. Zhao, Y. Yan, A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage, Renew. Sustain. Energy Rev. 135 (2021) 110127. https://doi.org/10.1016/j.rser.2020.110127.
  • [154] W. Tushar, C. Yuen, T.K. Saha, T. Morstyn, A.C. Chapman, M.J.E. Alam, S. Hanif, H.V. Poor, Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges, Appl. Energy. 282 (2021) 116131. https://doi.org/10.1016/j.apenergy.2020.116131.
  • [155] A.G. Olabi, K. Obaideen, K. Elsaid, T. Wilberforce, E.T. Sayed, H.M. Maghrabie, M.A. Abdelkareem, Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators, Renew. Sustain. Energy Rev. 153 (2022) 111710. https://doi.org/10.1016/j.rser.2021.111710.
  • [156] D. Binh Nguyen, D. Nong, P. Simshauser, T. Nguyen-Huy, General equilibrium impact evaluation of food top-up induced by households’ renewable power self-supply in 141 regions, Appl. Energy. 306 (2022) 118126. https://doi.org/10.1016/j.apenergy.2021.118126.
  • [157] M. Ram, J.C. Osorio-Aravena, A. Aghahosseini, D. Bogdanov, C. Breyer, Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050, Energy. 238 (2022) 121690. https://doi.org/10.1016/j.energy.2021.121690.
  • [158] R. Senthil, P. Sundaram, Effect of phase change materials for thermal management of buildings, Int. J. Civ. Eng. Technol. 8 (2017) 761–767.
  • [159] U. Shahzad, D. Ferraz, H.H. Nguyen, L. Cui, Investigating the spill overs and connectedness between financial globalization, high-tech industries and environmental footprints: Fresh evidence in context of China, Technol. Forecast. Soc. Change. 174 (2022) 121205. https://doi.org/10.1016/j.techfore.2021.121205.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db7d439e-aa96-4c54-8e2f-2caf1fe59439
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.