PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High strength metallurgical graphene as an additional reinforcing phase for carbon fibre composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of the present study is an elaboration of a method for a transfer of high strength metallurgical graphene (HSMG) and its introduction into the structure of fibre laminates. In this work, two transfer procedures have been established: a transfer onto structural adhesive film (SAF) and a direct transfer onto two types of carbon fibre pre-impregnates (uniaxial and biaxial cloth). An important novelty of the presented experimental work is a use of scanning electron microscopy (SEM) operating in the absorbed electrons (AE) mode. This technique enables the evaluation of graphene continuity on a large area within a relatively short time. The SEM/AE technique made it possible to ascertain that the transferred graphene was characterised by a low level of defects, indicating that it could be used as a reinforcing phase in composites. Both transfer procedures, one onto SAF and the other directly onto the pre-impregnates were used for manufacturing flat laminates as well as tubular profiles. The flat samples, containing 0.68 ppm HSMG by weight, exhibited a 9% increase of low cycle fatigue strength. The tubular profiles (bicycle components) with approximately 0.22 ppm of HSMG exhibited a significant increase of fatigue wear during initial tests. In addition, no fatigue delamination was observed at interfaces between the pre-impregnates separated with HSMG graphene.
Rocznik
Strony
355--365
Opis fizyczny
Bibliogr. 39 poz., fot., rys., wykr.
Twórcy
  • Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., Lodz, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., Lodz, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., Lodz, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., Lodz, Poland
autor
  • Advanced Graphene Products Sp. z o.o., Antoniego Wysockiego 4 St., Kisielin, Zielona Gora, Poland
  • Engineo Sp. z o.o., Leszno 59 St., Przasnysz, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., Lodz, Poland
Bibliografia
  • [1] Fim FC, Basso NRS, Graebin AP, Azambuja DS, Galland GB. Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J Appl Polym Sci. 2013;128:2630–7.
  • [2] Das TK, Prusty S. Graphene-based polymer composites and their applications. Polym Plast Technol. 2013;52:319–31.
  • [3] Yuan X. Enhanced interfacial interaction for effective reinforcement of poly(vinyl alcohol) nanocomposites at low loading of graphene. Polym Bull. 2011;67:1785–97.
  • [4] Potts JR, Lee SH, Alam TM, An J, et al. Thermomechanical properties of chemically modified graphene/poly(methyl meth-acrylate) composites made by in situ polymerization. Carbon. 2011;49:2605–23.
  • [5] Rafiq R, Cai D, Jin J, Song M. Increasing the toughness of nylon 12 by the incorporation of functionalized graphene. Carbon. 2010;48:4309–14.
  • [6] Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon. 2011;49:198–205.
  • [7] Quiles-Díaz S, Enrique-Jimenez P, Papageorgiou DG, Ania F, Flores A, Kinloch IA, Gómez-Fatou MA, Young RJ, Salavagione HJ. Influence of the chemical functionalization of graphene on the properties of polypropylene-based nanocomposites. Compos Part A. 2017;100:31–9.
  • [8] Bhattacharyya A, Chen S, Zhu M. Graphene reinforced ultra high molecular weight polyethylene with improved tensile strength and creep resistance properties. Express Polym Lett. 2014;8(2):74–84.
  • [9] Chen D, Zhu H, Liu T. In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl Mater Interfaces. 2010;2(12):3702–8.
  • [10] Song WL, Cao MS, Lu M-M, Bi S, et al. Flexible graphene/poly-mer composite films in sandwich structures for effective electro-magnetic interference shielding. Carbon. 2014;66:67–76.
  • [11] Fu X, Yao C, Yang G. Recent advances in graphene/polyamide 6 composites: a review. RSC Adv. 2015;5:61688–702.
  • [12] Li H, Xie X-M. Polyolefin-functionalized graphene oxide and its GO/HDPE nanocomposite with excellent mechanical properties. Chin Chem Lett. 2018;29(1):161–5.
  • [13] Yang X, Li L, Shang S, Tao X-M. Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer. 2010;51:3431–5.
  • [14] Atif R, Shyha I, Inam F. Mechanical, thermal, and electrical properties of graphene–epoxy nanocomposites-a review. Polymers. 2016;8(281):1–37.
  • [15] Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon. 2013;60:16–27.
  • [16] Sporting goods with graphene material. Patent US 2013/0090193 A1, 11 Apr 2013.
  • [17] Shen M-Y, Chang T-Y, Hsieh T-H, Li Y-L, Chiang C-L, Yang H, Yip M-C. Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites. J Nanomater. 2013. https ://doi.org/10.1155/2013/56540 1.
  • [18] Qiu J, Wang S. Enhancing polymer performance through graphene sheets. J Appl Polym Sci. 2011;119(6):3670–4.
  • [19] Cakir F, Uysal H, Acar V. Experimental modal analysis of masonry arches strengthened with graphene nanoplatelets rein-forced prepreg composites. Measurement. 2016;90:233–41.
  • [20] Mannov E, Schmutzler H, Chandrasekaran S, Viets C, Buschhorn S, Tölle F, Mülhaupt R, Schulte K. Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Compos Sci Technol. 2013;87:36–41.
  • [21] Pathak AK, Borah M, Gupta A, Yokozeki T, Dhakate SR. Improved mechanical properties of carbon fiber/graphene oxide epoxy hybrid composites. Compos Sci Technol. 2016;135:28–38.
  • [22] Kula P, Pietrasik R, Dybowski K, Atraszkiewicz R, et al. Single and multilayer growth of graphene from the liquid phase. Appl Mech Mater. 2014;510:8–12.
  • [23] Kolodziejczyk L, Kula P, Szymanski W, Atraszkiewicz R, et al. Frictional behaviour of polycrystalline graphene grown on liquid metallic matrix. Tribol Int. 2016;93B:628–39.
  • [24] Pawlak R, Lebioda M, Rymaszewski J, Szymanski W, Kolodziejczyk L, Kula P. A fully transparent flexible sensor for cryogenic temperatures based on high strength metallurgical graphene. Sensors. 2017;17(51):1–14.
  • [25] Kula P, Szymanski W, Kolodziejczyk L, Atraszkiewicz R, et al. High strength metallurgical graphene for hydrogen storage nano-composites. Vacuum. 2016;129:79–85.
  • [26] Kula P, Kaczmarek L, Zawadzki P, Kolodziejczyk L, et al. Functionality of graphene as a result of its heterogenic growth on SiC nanoparticles on the basis of reversible hydrogen storage. Int J Hydrogen Energy. 2014;39(34):19662–71.
  • [27] Kula P, Pietrasik R, Kazimierski D, Atraszkiewicz R, Dybowski K, Szymański W, et al. Resistance-temperature characteristics of CVD and high strength metallurgical graphene. Int J Nanotechnol. 2017;14(1/2/3/4/5/6):191–203.
  • [28] Kula P, Szymanski W, Kolodziejczyk L, Atraszkiewicz R, Dybowski K, Grabarczyk J, et al. High strength metallurgical Graphene-mechanisms of growth and properties. Arch Metall Mater. 2015;60(4):2535–41.
  • [29] Ferrari AC. Raman spectroscopy of graphene and graphite: disor-der, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143(1–2):47–57.
  • [30] Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson CW, McDonnell S, et al. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett. 2011;99(12):122108.
  • [31] Sachs R, Lin Z, Odenthal P, Kawakami R, Shi J. Direct comparison of graphene devices before and after transfer to different substrates. Appl Phys Lett. 2014;104:033103. https ://doi.org/10.1063/1.48620 63.
  • [32] Huang L-W, Chang C-K, Chien F-C, Chen K-H, Chen P, Chen F-R, et al. Characterization of the cleaning process on a trans-ferred graphene. J Vac Sci Technol A. 2014;32:050601. https ://doi.org/10.1116/1.48867 35.
  • [33] Xu J, Wang Q, Tao Z, Qi Z, Zhai Y, Wu S, et al. Field emission of wet transferred suspended graphene fabricated on interdigitated electrodes. ACS Appl Mater Interfaces. 2016;8:3295–300.
  • [34] Du J, Cheng H-M. The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys. 2012;213:1060-77.
  • [35] Xiao X, Xie T, Chengb Y-T. Self-healable graphene polymer composites. J Mater Chem. 2010;20:3508–14.
  • [36] Darby MI, Kanellopoulos VN. Theory of fibre buckling in carbon-fibre reinforced plastics. J Phys D Appl Phys. 1987;20:298.
  • [37] Young RJ, Liu M, Kinloch IA, Li S, Zhao X, Vallés C, Papageorgiou DG. The mechanics of reinforcement of polymers by graphene nanoplatelets. Compos Sci Technol. 2018;154:110–6.
  • [38] Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem. 2015;21:11–25.
  • [39] Ovidko IA. Enhanced mechanical properties of polymer-matrix nanocomposites reinforced by graphene inclusions: a review. Rev Adv Mater Sci. 2013;34:19–25.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db7ce872-5012-4f84-90b7-f62c4796d09c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.