PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Objective evaluation method using multiple image analyses for panoramic radiography improvement

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the standardization of panoramic radiography quality, the education and training of beginners on panoramic radiographic imaging are important. We evaluated the relationship between positioning error factors and multiple image analysis results for reproducible panoramic radiography. Using a panoramic radiography system and a dental phantom, reference images were acquired on the Frankfurt plane along the horizontal direction, midsagittal plane along the left–right direction, and for the canine on the forward–backward plane. Images with positioning errors were acquired with 1–5 mm shifts along the forward– backward direction and 2–10° rotations along the horizontal (chin tipped high/low) and vertical (left–right side tilt) directions on the Frankfurt plane. The cross-correlation coefficient and angle difference of the occlusion congruent plane profile between the reference and positioning error images, peak signal-to-noise ratio (PSNR), and deformation vector value by deformable image registration were compared and evaluated. The cross-correlation coefficients of the occlusal plane profiles showed the greatest change in the chin tipped high images and became negatively correlated from 6° image rotation (r = −0.29). The angle difference tended to shift substantially with increasing positioning error, with an angle difference of 8.9° for the 10° chin tipped low image. The PSNR was above 30 dB only for images with a 1-mm backward shift. The positioning error owing to the vertical rotation was the largest for the deformation vector value. Multiple image analyses allow to determine factors contributing to positioning errors in panoramic radiography and may enable error correction. This study based on phantom imaging can support the education of beginners regarding panoramic radiography.
Rocznik
Strony
85--91
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Department of Radiological Technology, Graduate School of Health Sciences, Okayama University, Japan
  • Division of Radiology, Medical Support Department, Okayama University Hospital, Japan
  • Department of Radiological Technology, Faculty of Health Sciences, Okayama University, Japan
  • Division of Radiology, Medical Support Department, Okayama University Hospital, Japan
  • Division of Radiology, Medical Support Department, Okayama University Hospital, Japan
  • Department of Radiological Technology, Faculty of Health Sciences, Okayama University, Japan
Bibliografia
  • 1. Różyło-Kalinowska I. Panoramic radiography in dentistry. Clin Dent Rev. 2021;5(26):1-10. https://doi.org/10.1007/s41894-021-00111-4
  • 2. Martins LAC, Nascimento EHL, Gaêta-Araujo H, et al. Mapping of a multilayer panoramic radiography device. Dentomaxillofac Radiol. 2022;51(4):20210082. https://doi.org/10.1259/dmfr.20210082
  • 3. Dhillon M, Raju SM, Verma S, et al. Positioning errors and quality assessment in panoramic radiography. Imaging Sci Dent. 2012;42(4):207-12. https://doi.org/10.5624/isd.2012.42.4.207
  • 4. Mckee IW, Glover KE, Williamson PC, et al. The effect of vertical and horizontal head positioning in panoramic radiography on mesiodistal tooth. Angle Orthod. 2001;71(6):442-51. https://doi.org/10.1043/0003-3219(2001)071<0442:TEOVAH>2.0.CO;2
  • 5. Manson EN, Mumuni AN, Shirazu I, et al. Development of a standard phantom for diffusion-weighted magnetic resonance imaging quality control studies: A review. Polish J Med Phys Eng. 2022;28(4):169-179. https://doi.org/10.2478/pjmpe-2022-0020
  • 6. Bąk B, Skrobała A, Adamska A, et al. Evaluation and risk factors of volume and dose differences of selected structures in patients with head and neck cancer treated on Helical TomoTherapy by using Deformable Image Registration tool. Polish J Med Phys Eng. 2022;28(2):60-68. https://doi.org/10.2478/pjmpe-2022-0007
  • 7. Ximenes AD, Anam C, Hidayanto E, et al. Automation of slice thickness measurements in computed tomography images of AAPM CT performance phantom using a non-rotational method. Polish J Med Phys Eng. 2022;28(3):133-138. https://doi.org/10.2478/pjmpe-2022-0016
  • 8. Tanabe Y, Ishida T. Automated Detection of Respiratory Movements for Image Quality Assurance. J Med Imaging Health Inf. 2020;10(7):1473-8. https://doi.org/10.1166/jmihi.2020.3039
  • 9. Tanabe Y, Ishida T. Development of a novel detection method for changes in lung conditions during radiotherapy using a temporal subtraction technique. Phys Engin Sci Med. 2021;44(2):1341-50. https://doi.org/10.1007/s13246-021-01070-7
  • 10. Tanabe Y, Ishida T. Quantification of the accuracy limits of image registration using peak signal-to-noise ratio. Radiol Phys Technol. 2017;10(1):91-4. https://doi.org/10.1007/s12194-016-0372-3
  • 11. Tanabe Y, Kiritani M, Deguchi T, et al. Patient-specific respiratory motion management using lung tumors vs fiducial markers for real-time tumor-tracking stereotactic body radiotherapy. Phys Imaging Radiat Oncol. 2022;25:100405. https://doi.org/10.1016/j.phro.2022.12.002
  • 12. Agarwal S, Agarwal A, Deshmukh M. Denoising images with varying noises using autoencoders. In: Nain N, Vipparthi S, Raman B. (eds) Computer Vision and Image Processing. CVIP 2019. Communications in Computer and Information Science. 2020;1148:3-14. https://doi.org/10.1007/978-981-15-4018-9_1
  • 13. Tanabe Y, Ishida T, Eto H, et al. Evaluation of the correlation between prostatic displacement and rectal deformation using the Dice similarity coefficient of the rectum. Med Dosim. 2019;44(4):e39-e43. https://doi.org/10.1016/j.meddos.2018.12.005
  • 14. Tanabe Y, Tanaka, H. Statistical evaluation of the effectiveness of dual amplitude-gated stereotactic body radiotherapy using fiducial markers and lung volume. Phys Imaging Radiat Oncol. 2022;24:82-87. https://doi.org/10.1016/j.phro.2022.10.001
  • 15. Oh S, Kim S. Deformable image registration in radiation therapy. Rad Oncol J. 2017;35:101-11. https://doi.org/10.3857/roj.2017.00325
  • 16. Arganda-Carreras I, Sorzano COS, Kybic J, Ortiz-de-Solorzano C. bUnwarpJ: Consistent and elastic registration in ImageJ. Methods and applications. Second ImageJ User & Developer Conference. 2008
  • 17. Sorzano CO, Thévenaz P, Unser Ms. Elastic registration of biological images using vector-spline regularization. IEEE Trans Bio Med. Eng. 2005;52(4):652-63. https://doi.org/10.1109/TBME.2005.844030
  • 18. Kattimani S, Kempwade P, Ramesh DNSV, et al. Determination of different positioning errors in digital panoramic radiography: a retrospective study. J Med Radiol Pathol Surg. 2019;6(2):5-8. https://doi.org/10.15713/ins.jmrps.159
  • 19. Pawar R, Makdissi J. The role of focal block (trough/plane) in panoramic radiography: why do some structures appear blurred out on these images? Radiography. 2014;20(2):167-70. https://doi.org/10.1016/j.radi.2013.11.004
  • 20. Rondon RHN, Pereira YCL, Nascimento GC. Common positioning errors in panoramic radiography: a review. Imaging Sci Dent. 2014;44(1):1-6. https://doi.org/10.5624/isd.2014.44.1.1
  • 21. Setiadi DRIM. PSNR vs SSIM: imperceptibility quality assessment for image steganography. Multimedia Tools and Applications. 2021;80(6):8423-44. https://doi.org/10.1007/s11042-020-10035-z
  • 22. Grillon M, Yeung AWK. Content Analysis of YouTube Videos That Demonstrate Panoramic Radiography. Healthcare. 2022;10(6):1093. https://doi.org/10.3390/healthcare10061093
  • 23. Tanabe Y, Ishida T. Development of a quantitative method based on the hill-shading technique for assessing morphological changes in the bone during Image-Guided Radiotherapy for Bone Metastasis. J Med Imaging Health Inf. 2021;11(8):2173-7. https://doi.org/10.1166/jmihi.2021.3818
  • 24. Hernandez AM, Wu PM, Siewerdsen JH, et al. Location and direction dependence in the 3D MTF for a high-resolution CT system. Med Phys. 2021;48(6):2760-71. https://doi.org/10.1002/mp.14789
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db7aeaeb-e454-4521-a3de-7cb49562b112
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.