PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of measuring process properties on phosphate rock slurry rheology based on Brookfield method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research aims to explore how the flotation process conditions influence the rheological properties of phosphate rock slurry. The apparent viscosity of phosphate rock slurry was measured by Brookfield DVNext rheometer. Different mineral types, grinding time, slurry mass concentration and reagent systems were adopted to study the viscosity behavior of phosphate rock slurry. The results showed that under the same conditions, the apparent viscosity of apatite and dolomite slurry was basically the same, and the apparent viscosity of the slurry after mixing the two minerals was basically the same as that of single mineral. For the same slurry concentration, the mineral particle size had a significant effect on the rheological behavior of the slurry, and its apparent viscosity increased exponentially with the decrease of particle size. In addition, phosphate rock slurry showed shear thickening fluids characteristics when the slurry concentration is 20%-40%, but changed to pseudoplastic fluid at high concentration (60%). Sulfuric acid as pH regulator and inhibitor had little effect on the rheology of slurry; when GJBW and NaOL were added as collectors, the rheology of slurry changed, and the effect of GJBW was more obvious.
Rocznik
Strony
art. no. 156202
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • Mining College, Guizhou University, Guizhou, Guiyang 550025, China
autor
  • Guizhou Academy of Sciences, Guizhou, Guiyang 550001, China
  • National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guizhou, Guiyang 550025, China
  • Guizhou Key Lab of Comprehensive Utilization of Nonmetallic Mineral Resources, Guizhou, Guiyang 550025, China
Bibliografia
  • CHEN, L., Y. ZHAO, H. BAI, Z. AI, P. CHEN, Y. HU, S. SONG, S. KOMARNENI. 2020. Role of Montmorillonite, Kaolinite, or Illite in Pyrite Flotation, Differences in Clay Behavior Based on Their Structures. Langmuir, 36 (36), 10860-10867.
  • CHENG, C. H. 1980. Viscosity-concentration equations and flow curves for suspensions. Chemistry and Industry, 17, 403-406.
  • CRUZ, N., J. FORSTER, E. R. BOBICKI. 2019. Slurry rheology in mineral processing unit operations, A critical review.The Canadian Journal of Chemical Engineering, 97 (7), 2102-2120.
  • CRUZ, N., Y. PENG, S. FARROKHPAY, D. BRADSHAW. 2013. Interactions of clay minerals in copper–gold flotation, Part 1 – Rheological properties of clay mineral suspensions in the presence of flotation reagents. Minerals Engineering, 50-51, 30-37.
  • CRUZ, N., Y. PENG, E. WIGHTMAN. 2015a. Interactions of clay minerals in copper–gold flotation, Part 2 — Influence of some calcium bearing gangue minerals on the rheological behaviour. International Journal of Mineral Processing, 141, 51-60.
  • CRUZ, N., Y. PENG, E. WIGHTMAN, AND N. XU. 2015b. The interaction of clay minerals with gypsum and its effects on copper–gold flotation. Minerals Engineering, 77, 121-130.
  • EL-MOFTY, S. E., A. A. EL-MIDANY. 2018. Role of calcium ions and their interaction with depressants in phosphate flotation. Chemical Papers, 72 (10), 2641-2646.
  • EL MOÇAYD, N., M. SEAID. 2021. Data-driven polynomial chaos expansions for characterization of complex fluid rheology, Case study of phosphate slurry. Reliability Engineering & System Safety, 216.
  • FARROKHPAY, S. 2012. The importance of rheology in mineral flotation, A review. Minerals Engineering, 36-38, 272- 278.
  • FREITAS, G. B., A. C. DUNCKE, C. N. BARBATO, M. C. K. DE OLIVEIRA, J. C. PINTO, M. NELE. 2018. Influence of wax chemical structure on W/O emulsion rheology and stability. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 558, 45-56.
  • KAWATRA, S., T. EISELE. 1988. Rheological effects in grinding circuits. International Journal of Mineral Processing, 22 (1-4), 251-259.
  • LABORATORIES, B. E. 2006. More solutions to sticky problems. Measurement Techniques, 55.
  • LEFEBVRE, L. P., J. WHITING, B. NIJIKOVSKY, S. E. BRIKA, H. FAYAZFAR, O. LYCKFELDT. 2020. Assessing the robustness of powder rheology and permeability measurements. Additive Manufacturing, 35.
  • LIU, S., B. HAN, T. ZHAO. 2021. The effect of various surfactants on fatty acid for apatite flotation and their adsorption mechanism. Physicochemical Problems of Mineral Processing.
  • LIU, X., C. LI, H. LUO, R. CHENG, F. LIU. 2017a. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. International Journal of Mineral Processing, 165, 20-27.
  • LIU, X., H. LUO, R. CHENG, C. LI, J. ZHANG. 2017b. Effect of citric acid and flotation performance of combined depressant on collophanite ore. Minerals Engineering, 109, 162-168.
  • LIU, X., Y. RUAN, C. LI, AND R. CHENG. 2017c. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system. International Journal of Mineral Processing, 167, 95-102.
  • MANGESANA, N., R. CHIKUKU, A. MAINZA, I. GOVENDER, A. VAN DER WESTHUIZEN, M. NARASHIMA. 2008. The effect of particle sizes and solids concentration on the rheology of silica sand based suspensions. Journal of the Southern African Institute of Mining and Metallurgy, 108(4), 237-243.
  • MUELLER, S., E. W. LLEWELLIN, H. M. MADER. 2009. The rheology of suspensions of solid particles. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 466 (2116), 1201-1228.
  • OSORIO, A. M., J. M. MARÍN, G. RESTREPO. 2015. Comportamiento Reológico de Pulpas de Cuarzo a diferentes Concentraciones del Sólido. Información tecnológica, 26 (1), 135-142.
  • PAN, Z., Y. WANG, Y. WANG, F. JIAO, W. QIN. 2020. Understanding the depression mechanism of sodium citrate on apatite flotation. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 588.
  • RUAN, HE, AND CHI. 2019. Review on Beneficiation Techniques and Reagents Used for Phosphate Ores. Minerals, 9(4). RUTGERS, I. R. 1962. Relative viscosity and concentration. Rheologica Acta, 2(4), 305-348.
  • WANG, Y., Y. PENG, T. NICHOLSON, R. A. LAUTEN. 2015. The different effects of bentonite and kaolin on copper flotation. Applied Clay Science, 114, 48-52.
  • YANG, B., S. CAO, Z. ZHU, W. YIN, Q. SHENG, H. SUN, J. YAO, K. CHEN. 2021. Selective flotation separation of apatite from dolomite utilizing a novel eco-friendly and efficient depressant for sustainable manufacturing of phosphate fertilizer. Journal of Cleaner Production, 286.
  • YANG, B., Z. ZHU, H. SUN, W. YIN, J. HONG, S. CAO, Y. TANG, C. ZHAO, J. YAO. 2020. Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant. Minerals Engineering, 156.
  • ZENG, M., B. YANG, H. ZHANG, F. JIA. 2022. A green depressant iminodisuccinic acid (IDS) for apatite-dolomite separation and its interaction mechanism. Minerals Engineering, 175.
  • ZHANG, H., F. ZHOU, M. LIU, Y. JIN, L. XIAO, H. YU. 2020. Employing sulfur–phosphorus mixed acid as a depressant, a novel investigation in flotation of collophanite. Energy Sources, Part A, Recovery, Utilization, and Environmental Effects, 1-14.
  • ZHANG, H., F. ZHOU, H. YU, M., LIU. 2021. Double roles of sodium hexametaphosphate in the flotation of dolomite from apatite. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 626.
  • ZHANG, M., AND Y. PENG. 2015. Effect of clay minerals on pulp rheology and the flotation of copper and gold minerals. Minerals Engineering, 70, 8-13
  • ZHENG, H., Y. CHEN, X. WENG, Y. JIN, R. M. KASOMO, S., AO. 2022. Flotation Separation of Dolomite from Fluorapatite Using Sodium Dodecyl Benzene Sulfonate as the Efficient Collector under Low Temperature. Minerals, 12 (2).
  • ZHOU, F., Q. LIU, X. LIU, W. LI, J. FENG, R.-A., CHI. 2020. Surface Electrical Behaviors of Apatite, Dolomite, Quartz, and Phosphate Ore. Frontiers in Materials, 7.
  • ZOU, H., Q. CAO, D. LIU, X. YU, H., LAI. 2019. Surface Features of Fluorapatite and Dolomite in the Reverse Flotation Process Using Sulfuric Acid as a Depressor. Minerals, 9(1).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db79a55f-abe6-406d-92e5-760b760bcd7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.