PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of corrosion resistance in liquid media of FeAl intermetallic phase based alloys with varied aluminium content

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presented results of corrosion resistance investigations with FeAl intermetallic phase matrix and different aluminium content (38%, 40% and 42%). Design/methodology/approach: In the corrosion research electrolyser, potentiostat „Solartron 1285” and computer with „CorrWare 2” software were used. Results of the research were worked out with „CorrView” software. The potential’s values were determined in relation to normal hydrogen electrode (NEW). The temperature of the solutions was kept on 21ºC level. The recording of potential/density of current - time curve was conducted for 300 s. Sample polarization ranges from potential smaller by 300 mV from normal potential to 0 mV in case of the test in 0.2% HCl solution as well as to 1500 mV in case of 3% H2SO4 solution. Rate of changing the potential amounted 10 mV/min in each case. Observations of the surface state were conducted using scanning electron microscope (JSM – 35) with magnifications from 30 to 1000. Findings: The results were showed that electrochemical corrosion conducted in 0,2% HCl and 3% H2SO4solution depend on aluminium content. The best electrochemical corrosion resistance in 0.2%HCl have samples of Fe-38Al intermetallic phase based alloy and in 3% H2SO4 have Fe-40Al. It was confirmed by the lowest value of corrosion current density, low value of passive current density, pitting corrosion resistance much higher than in other samples. Research limitations/implications: The results of potentiodynamic research of alloy examined in 0.2% HCl solution are presented in table 1, these for 3% H2SO4 in table 2. Results of the potentiostatic and galvanostatic tests are presented in table 3. In figures 1, 2 the potentiodynamic curve are presented. Table 4 presents results of the surface state after corrosion tests. Figures 3 - 8 present surface state of the samples after corrosion research, which was observed using the scanning electron microscope. Originality/value: Corrosion resistance in liquid media of FeAl intermetallic phase.
Rocznik
Strony
40--45
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Material Science, Silesian University of Technology, ul.Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Department of Material Science, Silesian University of Technology, ul.Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Department of Material Science, Silesian University of Technology, ul.Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] Cebulski J.: The methods of plasticity increasing for FeAl intermetallic based alloy – PhD thesis (1999) (In Polish)
  • [2] J. Barcik, J. Cebulski: FeAl intermetallics phase based alloy – structure and technological properties, Materials Engineering nr 1, (1997), p. 24.
  • [3] G. Matula, L.A. Dobrzański, A. Várez, B. Levenfeld, J.M. Torralba „Comparison of structure and properties of the HS 12-1-5-5 type high-speed steel fabricated using using the pressureless forming and PIM methods” J. Mat. Proc. Tech. 162-163 (2005) 230-236.
  • [4] T. Khan, Intermetallics for Struktural Application Proc. Conf. „High Temperature Materials for Powder Engeniering” 1990 hold in Liege, publ. Kluwer Alad. Publ.
  • [5] „High- temperature Aluminides Intermetallics” in Mater. Sc. & Eng. A152/A153/(1992)
  • [6] J. Cebulski, R. Michalik: The evaluation of alloy on the matrix of intermetallic phase FeAl. Protect from Corrosion. nr 2, (2005) p. 33-36. (In Polish)
  • [7] G. Matula, L.A. Dobrzański, A. Várez, B. Levenfeld, J.M. Torralba, Comparison of structure and properties of the HS 12-1-5-5 type high-speed steel fabricated using using the pressureless forming and PIM methods, Journal of Materials Processing Technology 162-163 (2005) 230-236.
  • [8] Z. Bojar, Z. Komorek, R. Łyszkowski, M. Wieczorek: Materials Engineering 17 (1997) p. 104.
  • [9] H. Garbacz, J.W. Wyrzykowski: Materials Engineering 17 nr 3 (1997) p. 86.
  • [10] J. Adamczyk, A. Grajcar “Structural and mechanical properties of DP-type and TRIP-type J. Mat. Proc. Tech. 162-163 (2005) 267-275.
  • [11] L.A. Dobrzański, A. Brytan, M.A. Grande, M. Rosso, E.J. Pallavincini “Properties of vacuum sintered duplex stainless steels” J. Mat. Proc. Tech. 162-163 (2005) 286-293.
  • [12] H. Paduch, J. Krztoń: Materials Engineering 1-2 (1994) p. 37.
  • [13] J. Barcik, Kupka M.: Materials Engineering 5 (1994) p. 112.
  • [14] S. Ratchev, S. Liu, A.A. Becker „Error compensation strategy in milling flexible thin-wall parts“ J. Mat. Proc. Tech. 162-163 (2005) 673-682.
  • [15] J. Barcik, J. Cebulski: Materials Engineering nr. 5 (1998) p. 901.
  • [16] R. Mania: Manufacturing of Mo-Al Intermetallics by SHS, XVth Physical Metallurgy and Materials Science Conference, ed. Sigma NOT, Kraków 1998, p. 921.
  • [17] E. Godlewska, S. Koziński, R, Mania M. Wesołek: XVth Physical Metallurgy and Materials Science Conference, ed. Sigma NOT, Kraków 1998, p. 929.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db75fded-800f-422c-a80d-7bc5061680ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.