Control and Cybernetics

vol. 45 (2016) No. 1

A new concept of an artificial ecosystem algorithm for
optimization problems*

by

Dariusz Baczynski

Warsaw University of Technology, Institute of Electrical Power Engineering
Koszykowa 75, 00-662 Warszawa, Poland
dariusz.baczynskiQien.pw.edu.pl

Abstract: This article provides, first, a review of applications of
the ecosystem idea in different computational intelligence methods.
The article presents the bases of ecosystem operation and a new
concept for modelling the phenomena occurring in an ecosystem,
with the aim of using these for optimization purposes. The author’s
original form of the Artificial Ecosystem Algorithm (AEA) and its
constituent parts are presented. The construction of the proposed
algorithm was dedicated for continuous optimisation. The opera-
tion of the Artificial Ecosystem Algorithm is also compared with an
Evolutionary Algorithm and PSO for six test functions for various
numbers of variables. Conclusions concerning operation, structure
and complexity of AEA are provided at the end.
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1. Introduction

During the last half of century, a lot of various computational intelligence meth-
ods were developed, originating in a large proportion from some natural phenom-
ena. One can list, among them: Artificial Neural Networks (see Hertz, 1991),
Evolutionary Algorithms (Michalewicz, 1992), Fuzzy Systems (see Zadeh, 1965),
Simulated Annealing (see Kirkpatrick et al., 1983), Artificial Immune Systems
(see de Castro and Timmis, 2003), Particle Swarm Optimization (see Kennedy
and Eberhart, 1995), Ant Algorithms (see Dorigo et al., 2006), Bee Algorithms
(see Bonabeau et al., 1999), Harmony Search (see Geem et al., 2001), Cultural
Algorithms (see Reynolds, 1994), Memetic Algorithm (see Moscato, 1989), Bac-
terial Algorithms (see Bremermann, 1974), Firefly Algorithm (see Krishnanand
and Ghose, 2005), Bat Algorithm (see Yang, 2010a), Tabu Search (see Glover,
1990), Cuckoo Search (see Yang and Deb, 2009), Eagle Strategy (see Yang,
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2010a), Photosynthetic and Enzyme Algorithm (see Yang, 2010a), River For-
mation Dynamics (see Rabanal et al., 2007), Roach Infestation Optimisation
Algorithm (see Havens et al., 2008), Mosquito Host-Seeking (see Feng et al.,
2009), Slime Mould Life Cycle (see Monismith and Mayfield, 2008), Intelligent
Water Drops (see Shah Hosseini, 2007), Shuffled Frog Leaping Algorithm (see
Eusuff and Lansey, 2003), Weed Colonization Optimization (see Mehrabian and
Lucas, 2006), Biogeography-Based Optimization (see Simon, 2008), or Symbi-
otic Organisms Search (see Cheng and Prayogo, 2014).

The Computational Intelligence methods, which are used for optimisation,
can be arguably classified as being inspired by single, ‘isolated’ natural phenom-
ena. This is the case for, among others, algorithms imitating various aspects
of living organisms. For instance, there is a group of algorithms imitating the
way animals seek their food (e.g., PSO, Ant, or Bee algorithms), another group
of algorithms mimics the expansion of plants (e.g., the Invasive Weed Opti-
mization), yet another one is inspired by the phenomena of natural evolution.
However, nature has the ability to adapt to different, often very diverse envi-
ronments, using a synergy of various phenomena. The effectiveness of nature in
this process suggests that its emulation should provide an effective optimisation
method. In looking for inspirations for a model based on natural phenomena,
whose scope of operation is broader than that of the single-process oriented
ones, discussed at this point, attention has been paid to the phenomenon of an
ecosystem. Ecosystems are still emerging in very different places on Earth. We
can see ecosystems ranging from very small to very large. They give the oppor-
tunity to live and to evolve for different organisms. Usually, organisms use the
ecosystem resources optimally, building together a stable 'construction’. But
forming of stable ecosystem may take a lot of time after number of ecosystem
collapses.

When we look into an ecosystem, we can see:

- interactions between organisms belonging to the same species (for short
periods of time), which can be modelled by, for instance, such paradigms as
PSO, Ant Algorithms, Bee Algorithms, Firefly Algorithms, but also a host of
other algorithmic structures,

- interactions between organisms belonging to different species (for short
periods of time), which can be modelled by, say, PSO, Symbiotic Organisms
Search, or Biogeography Based Optimisation,

- interactions between the environment and the organisms of a single specie
(for very long periods of time), which can be modelled as evolutionary pressure
by, definitely, the Evolutionary Algorithms,

- interactions between organisms belonging to different species (for very long
periods of time), which can be modelled as evolutionary pressure, also, certainly,
the Evolutionary Algorithms.

Combining all of these interactions in one algorithm should give an opportu-
nity to build a better optimisation method; we must remember, naturally, that
this can be a very slow method and a very complicated one (simply because of
the characteristics of the source metaphor).
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The literature that would discuss the characteristics, and even more so the
parameters and the modelling of an ecosystem, is, as of now, scarce. This sit-
uation leaves a broad scope for research and, possibly, an effective application
of the algorithms developed on this basis in various fields of technology. The
work of Binitha and Siva Sathya (2012) presents an overview of three methods
classified as those inspired by ecology and ecosystems. One of them is PS?O
(see Chen and Yunlong, 2008), being an algorithm emulating the symbiosis be-
tween species in an ecosystem. This process is modelled using the parallel PSO
algorithms, which exchange information from time to time. The second method
is Invasive Weed Optimization (see Mehrabian and Lucas, 2006), which models
the spreading of plants over a certain area. The last of the here mentioned
method is Biogeography-Based Optimization (see Simon, 2008) which models
the spread of species across habitats.

A somewhat different approach to ecosystem phenomena has been adopted
by de Boer and Hogeweg (2012), who use an ecosystem model consisting of
prey, predators and scavengers (which eat the leftovers of the prey — the final
link in the food chain). The purpose of the algorithm, operating in this form
is to define the form of the function (in the Lisp language) whose points in
space, represented by prey, are known. The task of the co-evolution of the two
remaining types of organisms is the possibly best adaptation to the prey — here
represented by the potential of eating the prey with no leftovers. The success,
whose achievement terminates the running of the respective algorithm, is to
generate a predator or a predator-scavenger pair which will eat all prey with no
leftovers.

The proposal of Adham and Bentley (2014), who suggested the Artificial
Ecosystem Algorithm for the purpose of solving the travelling salesman problem,
is reduced to creating a solution from the individuals being its parts (parts of the
itinerary sought). These individuals are subject to recombination operations,
by which they are able to create a better solution by ‘cooperating’ with each
other.

A solution which employs the relationship between a population of prey and a
population of predators is used in Vulli and Agarwal (2008). However, here only
the prey is subject to evolution, trying to adopt the best possible ‘camouflage’ for
the environment they live in, which makes them successful in the evolutionary
process. An interesting aspect of that paper is also that it discusses the dynamics
of particular populations. A model for a simple food chain is used in Hai-Fei
and Ding-Wei (2006) for building an optimization algorithm. Flows of energy
between different types of artificial organisms (artorgs), which depend on their
concentration in the solution space, are used in the proposed method to suggest
the desirable exploration paths to the individuals.

The idea of an ecosystem is also often used for modelling and developing
Digital Business Ecosystems, which, as their authors argue, are much more
effective than the service-oriented architectures (see Briscoe et al., 2007, or
Briscoe et al., 2011).

Research is also underway concerning the evolution of artificial organisms in
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artificial ecosystems. Thus, for instance, Lafusa (2007) proposes on this basis
the conclusions related to the dynamics of internal components of ecosystems.
In Pichler and Canamero (2007), this approach is used for obtaining complex
structures of individuals — agents characterized by the desirable behaviours in
the respective environment. Likewise, the co-evolution of predators and prey
presented in Tzima et al. (2007) produces agents using effective behavioural
rules in an artificial environment.

2. The concept of ecosystem algorithm

In creating an Artificial Ecosystem Algorithm (AEA), it would be highly con-
venient to use an ecosystem model or definition of an ecosystem as such. Each
researcher perceives this notion in a specific way, which results in a high vari-
ety of papers on ecosystems, as well as in the already mentioned optimization
methods.

The following general definition, which was proposed by Weiner, in Weiner
(2012), provides the starting point for further analysis: ‘A system which carries
out production and decomposition processes using energy and supporting the
elements circulation cycle, is called the ecosystem’. In addition, as observed
by the author quoted, apart from systems which comprise living organisms, no
other natural systems are known to have such properties. The above definition
is sufficiently general to allow one to consider both the biosphere — on the entire
Earth, or a water droplet, to be an ecosystem. For the purpose of this paper,
we will interpret an ecosystem as a dynamic system created by the existing and
often interdependent, simple or more complex, living organisms, influenced by
the inanimate environment.

This meaning is also represented by other definitions of ecosystem (see
Weiner, 2012):

e ‘an ecosystem is the entirety of organisms inhabiting a certain area, being
in mutual relationship to each other, together with their abiotic environ-
ment’,

e ‘an ecosystem denotes an ecological unit which covers all organisms in a
given area (i.e., biocoenosis) and interacts with the physical environment
in such a way that the flow of energy leads to a distinctly defined food
structure, biotic diversity and circulation of matter (i.e., the exchange of
elements and compounds) between living and abiotic parts of that unit’,

e ‘An ecosystem can be defined as an environmental unit composed of dif-
ferent biotic and abiotic components which are interrelated by processes of
exchange of chemical compounds and energy. Simply speaking, an ecosys-
tem includes all organisms inhabiting a given environment and abiotic
elements of their environment’.

In the research on ecosystems, see Sagoff (2003), there is a distinct division into
two principal threads. One of them describes the problems related to the flow
of matter and energy inside an ecosystem and between interlinked ecosystems
(see Ulanowicz, 2000). This involves research dealing with what is called trophic
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networks (food webs), which are, in actual practice, reduced to food chains. The
second thread focuses on relationships between organisms in terms of natural
selection and evolution.

Definitely, these threads should complement each other, because focusing
on a single aspect of the interplay between ecosystem components significantly
reduces the potential for structuring and explaining a specific behaviour of such
ecosystem as a whole as well as of its constituent parts. For instance, food webs
cannot explain the co-existence of species which exchange no energy or matter
between them.

Now, based on the present author’s experience and on previous reviews of
different Computational Intelligence methods, together with the assumptions
adopted for the ecosystem, an algorithm will be built which is based on re-
lationships between organisms in their environment rather than on an exact
representation of a food web, meant as a balance of food flows in the ecosystem
as a whole. An assumption was namely made that the relationships between in-
dividuals should be modelled both by their mutual relationships within a single
group and the relationships between individuals belonging to different groups,
co-existing as a part of the ecological system. The relationships existing within
a single class of individuals are, for instance: the possibility of crossover be-
tween individuals and having offspring, or the capacity for certain collaboration
in foraging. One standard example of relationships between different groups of
individuals is provided by the evolutionary pressure exerted by some organisms
on others.

The following basic assumptions are therefore adopted:

e the abiotic environment of the ecosystem determines the fitness function
(being in relation to the objective function of the problem to be optimized),

e three principal types of organisms: plants, herbivores and predators, exist
in the ecosystem

e plants are representatives of autotrophs (producers) and process the com-
ponents existing in the ecosystem,

e plants are eaten by herbivores,

e predators prey on herbivores and eat them,

e all types of organisms reproduce (cross over and mutate) within their own
species.

3. The proposed form of the ecosystem algorithm
3.1. Assumptions as to the functioning of the ecosystem algorithm

Based on the concept of the ecosystem and the criteria of its complexity pre-
sented in Section 2 above, the following detailed assumptions are proposed for
the ecosystem algorithm.

Assumptions on the ecosystem as a whole:

e the ecosystem will consist of three types/groups of interacting organisms:
plants, herbivores and predators; this interaction is presented in Fig. 1 in
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the form of a trophic network,

the abiotic environment for the ecosystem determines the fitness function,
and the ecosystem algorithm seeks its maximum value; in addition, the
fitness function is in relationship to the objective function of the problem
to be optimized.

Predators ‘

3

Herbivores ‘

7'y

Plants ‘

T

Fitness function ‘

Figure 1. Trophic network of an artificial ecosystem

The assumptions for the particular groups of organisms:

the fitness function for plants models the content of nutrients in particular
points of the ecosystem,

plants are representatives of autotrophs (producers) and process the com-
ponents existing in the ecosystem; the higher the content of nutrients in
the particular point, the larger the size of the plant growing at that point,

e plants do not change their position,
e the position of the offspring of a pair of plants is determined by the

crossover of information from both parents,

the fitness function for herbivores models a favourable environment — such
that provides food (plants) and provides a shelter from predators,

the offspring of a pair of herbivores receives in its genetic material — in-
herited from parent individuals — information about how to move and
information on their position,

the fitness function for predators models an environment potentially rich
in food (prey in the form of herbivores),

a predator must eat at least one herbivore during a specific number of
iterations, otherwise it dies of hunger,

the offspring of a pair of predators inherits from the parent individuals, in
its genetic material, information about how to move and information on
their position,

each type of organism is able to mutate: in plants this results in the
relocation of a plant in the solution space, and in herbivores and predators
it results in a change of the movement strategy.

The assumptions on relationships between organisms:
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e in each iteration, herbivores eat a specific weight/portion of a selected
plant; if plants are smaller than the portion required by the herbivore in
each iteration, the herbivore is eating them in such quantity that their
combined weights are equal to the required quantity,

e herbivores may transfer plant seeds to their hides,

e herbivores are looking for good locations for their hides using information
about the position of the plant they feed on and other information, using
a specific movement strategy,

e predators prey on herbivores, and the effect of preying may be twofold:
the herbivore may be either scared away and escape in a random direction
or it may be eaten by the predator; the effect depends on the relative
effectiveness of environment exploration by the herbivore and the predator.

A visual diagram of the structure of individuals of the ecosystem algorithm and
mutual relationships is presented in Fig. 2.

herbivore-plant relationship

movement pattern

YI ¢ solution space
plan
%ﬂherbivore Wdator

Figure 2. Relationships between individuals (own elaboration)

The assumptions made for the relationships between particular types of or-
ganisms and the operation of the algorithm as a whole result in the need for
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individual organisms to store information about their statuses (Fig. 3). The
information can be split into two groups.

One group is the kind of the organism’s genotype. For plants, which are
stationary, the genotype is defined only by the point in the solution space,
represented by the position co-ordinates of the plant. For organisms, which
are able to move (herbivores and predators), the genotype includes additional
variables, defining how organisms move in the solution space. They define how
the organism’s movements are affected by:

- its own experience,

- other organisms of the same species, and

- selected organisms from the group of organisms on which it feeds.

Another set of information stored, by the organism, is the supplementary
information, defining the quality of the solution represented by a given organism,
its experiences so far, and feeding relationships.

W PLANT P %ﬂ HERBIVORE l— W PREDATOR

Position co-ordinates G Position co-ordinates G Position co-ordinates G
E Movement control ﬁ Movement control ﬁ
E parameters E parameters E
Fitness function value Fitness function value Fitness function value
Current value/size of the plant Best position Best position
(not eaten part of the plant)
Velocity Velocity
[_|Number (ID) of plant currently __|Number (ID) of herbivore
fed on by the herbivore currently hunted by the predator

Current vitality

Figure 3. Information stored by particular types of organisms (own elaboration)

3.2. Structure and elements of ecosystem algorithm

A key element of any optimization algorithm is constituted by how it transforms
the decision variables, used for describing solutions for a specific kind of problem,
into variables on which the algorithm actually operates. In the proposed basic
version of the ecosystem algorithm, which operates on real numbers, an encoding
in evolutionary algorithms is adopted, called ‘natural’ encoding. This means
that each decision variable of a problem corresponds to a single variable, which
represents the position of the given kind of organism in the solution space.
This space is the abiotic environment of the ecosystem — a niche, in which the
ecosystem as a whole will develop.

From the practical point of view: each organism stores in itself a set of real
numbers representing its position. The general structure of the proposed ecosys-
tem algorithm is presented in Fig. 4. The particular blocks of this diagram are
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herbivores and predators
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Calculation of the fithness function value
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|

Remembering the best individuals in
particular populations and the best
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!

Simulation of movement of herbivores and
predators
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Simulation of interactions:
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|

Crossover and mutation in particular
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predators

Stop
criterion

Solution

Figure 4. General structure of the proposed ecosystem algorithm



14 D. BACZYNSKI

described in the subsequent parts of the present sub-chapter, describing the
phases of algorithm operation (in accordance with the respective block designa-
tions).

1) Establishing initial populations: The algorithm starts from establishing
initial populations of all types of organisms, with the following population sizes:
plants — Ny, herbivores — Ny, and predators — N, (Fig. 5). The solution
space is assumed to be limited, that is — each of its N dimensions can take
values from a specific range only. Each plant will be randomly assigned a point
in the solution space to be placed in. For predators and herbivores, in addition
to the random assignment of their positions, randomly chosen are, as well, the
parameters, which govern the way they move (co, c1, ¢2,¢3, ¢4, ¢5, based on the
relationships, described in 4.3 and 4.4) within the ranges (min., max.) for the
respective ¢! parameter.

HERBIVORES
PLANTS — -
No/| Position co-ordinates [Movement control
No | Position co-ordinates parameters
Herbivore - plant
1 |X1, X2, X3, ..., XN relationship 1 X1, X2, X3, ..., XN Co, C1, C2, C3,C4, C5
2 X1, X2, X3, ..., XN 2 | X1, X2, X3, ..., XN Co, C1, C2, C3,C4, C5
3 |X1, X2, X3,..., XN 3 | X1, X2, X3, ..., XN Co, C1, C2, C3,C4, C5
INpi | X1, X2, X3, ..., XN he| X1, X2, X3, ..., XN Co, C1, C2, C3,C4, C5
Predator - herbivore
relationship
PREDATORS
No| Position co-ordinates  [Movement control
parameters
1 X1, X2, X3, ..., XN Co, C1, C2, C3,C4, C5
2 | X1, X2, X3, ..., XN Co, C1, C2, C3,C4, C5
3 | X1, X2, X3, .oy XN Co, C1, C2, €3, C4, Cs5
Npr| X1, X2, X3, ..., XN Co, C1, C2, C3,C4, C5

Figure 5. Randomly assigned elements in the initial populations (own elabora-
tion)

One plant, meant to ‘feed’ on, is randomly assigned to each herbivore (a
single individual). Similarly, each predator is assigned an initial vitality level
Zppr and one herbivore to prey on.

2) Calculating the value of the fitness function and remembering the best
individuals: The next stage of the algorithm is to assign, for each i** individual
from each population, the value of the fitness function, fitness;. This function is
identical for plants, herbivores and predators — all three groups are solving the
same optimization problem. There is no difference in terms of shape, gradients
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and local optimums of the hypersurface on which the individuals move. This
allows for the direct comparisons between the solutions attained by the indi-
viduals from different populations. This is of key importance for the selection
of best solutions and for the emulation of interactions between herbivores and
predators. The fitness function should be linked to the form of the target func-
tion of the problem to be solved. Like in the evolutionary algorithms, the fitness
function is assumed to be positive for all individuals, whereas the algorithm will
seek to maximize this function. Based on the value of the fitness function,
the best-performing individuals in particular populations are selected and re-
membered, and the best solution found so far is remembered. Likewise, each
herbivore and predator remembers its best position found so far. For plants,
in the first step (and following each ‘birth’ of a new plant), their size is also
determined, and the size depends on the fitness function. The average initial
size of plants in a population is assumed to be 1, and the size W, ; of the i*"
plant will be determined by the following equation:

fitness;
pli = N

> fitness;
i=0

Wp *Npl *prl- (1)

3) Simulation of movements of individuals: The next step of the algorithm
is to simulate the movement of herbivores and predators in the solution space.
The positions of these organisms are determined like in the PSO algorithm. The
position of an organism is determined separately in each dimension and depends
on the previous position and on the current velocity of the individual in a given
dimension (as expressed in equation (2) below):

of = af + ot 2)

The velocity of organisms, assuming that the duration of a single iteration is 1,
defines, in fact, the difference (vector) between the initial and the final position.
The velocity of a herbivore in the k" dimension in step ¢+1 is in accordance
with equation (3), given below. Thus, the herbivore’s movement incorporates:

- its own experience, being the previous velocity and the best position found
so far,

- other organisms of the same species, by incorporating the best position
found so far by all organisms and the best position found by a neighbour of the
particular organism,

- selected organisms from the group of organisms, on which it feeds, by
taking into account the position of the plant, to which it is assigned, and the
plant with the best value of the fitness function,

t+1 t D+t
vy, —

= corgui + i (yy, — o)) +earh(yg — k) + ey (Y™ — 7))+
(3)

t /. plantxt + t / bplantxt t
+ecary(yy, — x3) + es75 (), — )
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where: v, ri,r5, vk, v, rt  — are random numbers from the range of (0,1), taken
with uniform distribution,

vt — herbivore’s velocity in the previous step in the k*"dimension,

x%  — herbivore’s co-ordinate in the previous step in the k'"dimension,

yt  — the co-ordinate of the herbivore, representing its best position found
so far,

yg*t — the co-ordinate of the best position found so far (of all the herbivores
in all iterations),

yp*t — the co-ordinate of the best position found in the previous iteration

among neighbours of the respective herbivore within the radius of w,, from its
position on the list of herbivores,

yzlant*t — the co-ordinate of the plant the herbivore is assigned to and
which is eaten by the herbivore,

yZp lant*t " _ the co-ordinate of the plant with the so-far best fitness function
among plants,

cy, €1, C2, c3, c4, c5 — weights, determining the contribution of the
particular components to the resultant velocity of the herbivore.

The velocity of a predator in the k" dimension in the i*" step proceeds in
accordance with Equation (4). Thus, the predator’s movement incorporates,
like for the herbivore, its own experience and that of the other organisms of the
same species. In addition, the best positions found so far by all herbivores and
by the herbivore preyed on by the particular predator are incorporated.
= corbvf + erri(yh — x}) + carb ()™ — a}) + earh(ypt — af)+

(4)

t+1
Uk

bearb e = o) + carb R~ af)

where:

rh,ri s,k rt rt — are random numbers from the range (0,1) with uni-
form distribution,

vt — predator’s velocity in the previous step in the k*" dimension,

xt  — predator’s co-ordinate in the previous step in the k' dimension,

yt  — predator’s co-ordinate representing its best position found so far,

yz*t — the co-ordinate of the best position found so far (of all the predators
in all iterations),

y*t  — the co-ordinate of the best position found in the previous iteration
among neighbours of the respective predator within the radius of w, from its

position on the list of herbivores,

yher*t — the co-ordinate of the best position of the herbivore on which the
predator preys,
yzher*t — the co-ordinate of the best position found so far by herbivores,

cy, €1, C2, c3, ¢4, c5 — weights, determining the contribution of the
particular component to the resultant velocity of the predator.

As previously mentioned, weights cg, - - - , ¢5 will be randomly selected from
specific ranges, both for herbivores and predators. In addition, the value of these
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parameters will change by the operation of the crossover and mutation opera-
tors. The adoption of broad variability ranges for these parameters, including
negative values, will provide for some optimization of the way the solution space
is explored by these organisms. This means that the algorithm will be optimiz-
ing the solution to the problem, as well as improving its own operation at the
same time — i.e., in some sense, it will be a self-adaptive algorithm.

4) Simulation of interactions between groups of individuals: After perform-
ing the simulation of movements of herbivores and predators, a condition is
tested as to whether there should be a shift to the simulation of interactions
between individuals. In its simplest form: the condition verifies if a specific num-
ber of movement simulation iterations have been performed. If this condition
is met, the first step shifts to simulating the interactions between individuals of
different types.

First, interactions between plants and herbivores are simulated. Each her-
bivore eats a certain weight of plants Hy (food requirement). First, it feeds
on the plant it is assigned to, and reduces its size. If the plant is smaller than
the consumer’s requirement, the consumer randomly selects another plant and
continues feeding. It eats the new plants so long as its requirement is met (see
further on for the potential consequences of lack of possibility to fulfill this
condition).

Then, preying of each predator on the herbivores assigned to it, is simulated.
The outcome of preying depends on the comparison of the best solutions found
so far by the predator and its prey. If, during its past lifetime, the predator has
found a better solution than the herbivore, the predator eats the herbivore, and
its vitality level is increased by one unit. Otherwise, the herbivore runs away in
a random direction, and the predator remembers the place of encounter (as its
best position), but due to the failure of hunt its vitality level decreases. If the
vitality of a given predator decreases below zero, the predator dies. The initial
vitality level of each predator is determined at its ‘birth’ as equal Zy,;.

5) Crossover and mutation: An interplay between groups of organisms leads
to the reduction of populations. Therefore, functions are needed to simulate
the birth of new individuals in particular populations. In the adopted solution,
two organisms of one type cross over, forming a new offspring organism. This
solution is different from those adopted in the typical evolutionary algorithms,
in which two offspring individuals are usually formed following the crossover.
Crossover is a random process, both in terms of the selection of individuals
for breeding and in terms of the selection of the parental traits, forming an
offspring individual. On the one hand, crossover, by which a single descendant
is obtained, allows one to test the combinations of traits of a larger number of
individuals.

On the other hand, a crossover, typical to evolutionary algorithms, makes it
possible to test in one step two different combinations of parental individuals.
In the ecosystem algorithm, crossover with one descendant is applied — due
to the basic function of crossover, i.e., to replenish the quantity of particular
populations and due to its simple implementation. For plants, crossover affects
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only the information about the position of parents (Fig. 6).

PLANTA

Position co-ordinates

mzm@o

AAAAA\AAAAAAAAA

\crossover point

Offspring PLANT

G |Position co-ordinates

crossover E
N |AAAAABBBBBBBEB

PLANTB

Position co-ordinates

BEEBBBEBBBEBBB

mzm@

Figure 6. Crossover of plants
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E
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E
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Figure 7. Crossover of predators and herbivores

However, for herbivores and predators, crossover is applied both to the posi-
tion of the parents and to the parameters describing their movement, that is, the
factors co, . . ., ¢5 from Equations (3) and (4), see Fig. 7. In all cases, traditional
one-point crossover is used. The crossover in the proposed algorithm fulfils two
functions. One (for all groups of organisms — the crossover of information on the
position) is the function that is fulfilled by crossover in a classical evolutionary
algorithm. Due to this, the offspring individual can combine information on how
to solve the problem held by the parental individuals. The other function of
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the crossover (for herbivores and predators — the crossover of factors cg, -+, ¢s5)
allows one to create offspring individuals, which behave in a way resulting from
how the parent organisms behaved. Behaviour is taken to mean a pattern of
movement in foraging.

To ensure the stability of both the algorithm and of the evolutionary pres-
sure, the numbers of organisms in all populations are assumed to be stable in all
generations. The ratios of the number of individuals in particular groups should
be similar to those observed in nature, which means that the number of plants
should be much higher (at least by an order of magnitude) than the number of
herbivores, and the number of the latter should be much higher than the num-
ber of predators. The precondition for successful completion of the algorithm is
to preserve the quantity of organisms on each level of the food web. For if the
quantitative proportions between particular groups of individuals break down,
the ecosystem may fail as well, say, for instance, when all plants get eaten up in
several iterations. This, in turn, results in breaking the operation of the ecosys-
tem algorithm, and hence in the failure to achieve the optimum of the target
function sought.

The next step of the algorithm is simulation of mutation — identical to the
mutation used in evolutionary algorithms. For plants, it applies to the position
of the plant (Fig. 8), and for herbivores and predators, subject to mutation are
factors co,...,cs (Fig. 9). In both cases, a simple one-point mutation is used.
Each group of individuals has its characteristic probability of mutation: plants
~ Dmpl, herbivores — pmpe, predators — pp,pr.

PLANT PLANT
G |Position co-ordinates G |Position co-ordinates
E AAAAAAAIAAAAAAA E AAAAAABAAAAAAA

mutation point

Figure 8. Mutation of plants

ORGANISM ORGANISM

G |Position co-ordinates G |Position co-ordinates

E E

2 AAAAAAAAAAAAAA 2 AAAAAAAAAAAAAA
Movement parameters Movement parameters
CCCCC CcCCC

mutation point

Figure 9. Mutation of predators and herbivores

The mimicking of the transfer of plant seeds by herbivores is a process similar
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to mutation — they may be brought to, e.g. the herbivore’s shelter. Conform
to the logic of the assumptions made, it means that the plant is transferred to
the best point in the solution space, found so far by the herbivore feeding on a
given plant. The number of such movements is represented by the value of the
parameter Np,p.

6) Operation ending: The final part of the algorithm is to test the pre-defined
condition for successful completion of the operation. This condition can take
any form — depending on the particular implementation and the problem to be
solved. In the solution modelled here, the stop criterion is a specific number of
iterations Njzer.

7) Parameters of the ecosystem algorithm:

Niter — number of iterations of the algorithm (the stop criterion),

N;, — number of simulation iterations between interactions between indi-
viduals,

Ny — size of plant population in the ecosystem,

Np. — size of herbivore population in the ecosystem,

Npr — size of predator population in the ecosystem,

Pmpi  — Probability of plant mutation,

Pmhe — probability of herbivore mutation,

DPmpr — probability of predator mutation,

Nppi  — number of transfers of plants by herbivores,

Zppr — initial vitality level of a predator,

Whppr  — coefficient of initial size of a plant,

Hp; — herbivore’s food requirement,

wy, — extent (radius) of the neighbourhood, in which the best predator or
herbivore are sought (Equations (3) and (4)); at this point, the neighbourhood is
taken to be the relationship between individuals in terms of mutual position on
the list of individuals of a specific type as opposed to the distance in the solution
space; such approach is much less computation-intensive than determining the
geometric distance between the individuals,

min., maz, — lower and upper boundaries of the range, in which values of
factors co, c5 from Equations (3) and (4) are randomly selected.

Practical ranges of parameters:

Npi, Nhe, Npr — ratiosof the number of individuals in particular groups
should be similar as in nature, which means that the number of plants should
be much higher (at least by an order of magnitude) than the number of herbi-
vores, and the number of the latter should be much higher than the number of
predators. In order to obtain good results one should start with the number of
plants of few hundred up to few thousands. This would entail the appropriate
number of herbivores and predators.

DPmpls  Pmhe; Pmpr — Mutation probabilities should be (like in other EAs)
between 0.01 and 0.3.

Nmpl - (17 10)

Nin  — (5;500)

H, —(0.02;0.5)
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Zppr — (50;200)

wy,  —(1;5)

mine, maz. — (—2.0;2.5)

Niter  — (1000; 1000000)

Wypt  — (0.5;3.0) coeflicient of initial size.

These values are based on the experience gathered with other algorithms
(PSO, EA), but they do also result from the construction of the algorithm
(number of organisms in populations), and finally, they result, as well, from the
tests being made during the work on this algorithm.

4. The tests

The proposed Artificial Ecosystem Algorithm (AEA) was tested on six com-
monly used test functions with simple bounds as constraints (see Yang, 2010b,
or Bratton and Kennedy, 2007), that is: Ackley’s, Rosenbrock’s, DeJong’s,
Griewank’s, Rastrigin’s and Schwefel’s function.

The tests were performed for a large number of algorithm iterations (10°),
meant to find which method can explore the solution space continuously when
it has such an opportunity. This is a significant feature of an optimisation
algorithm, used in the so called ‘off-line’ problems, where obtaining a slightly
better solution is much more important than obtaining it fast.

The results were compared with the results obtained from the Evolution-
ary Algorithm (EA) and the Particle Swarm Optimization (PSO). All of these
mentioned algorithms were implemented in the C++ language (DEV-C++ IDE
environment).*

The first testing function was the Ackley’s function (see Yang, 2010b):

f(z) = —20exp —; +20+e (5)

1 n
— exp l— Z cos(2mx;)
n

=1

where: n =1, 2, ...; and —32.768 < z; < 32.768 for i = 1, 2, ..., n. This function
has the global minimum f, =0 at ., = (0, 0, ..., 0).

The second was the Rosenbrock’s function (see Yang, 2010b, or Bratton and
Kennedy, 2007):

n—1

1=1

where: n =1, 2, ...; and —30.0 < z; < 30.0 for ¢ = 1, 2, ..., n. This function
has the global minimum f, =0 at z, = (1, 1, ..., 1).

*The respective project files are available to the interested researchers upon e-mailed re-
quest.
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The third was De Jong’s function (see Yang, 2010b, or Bratton and Kennedy,
2007):

fla) =Y a? ”)

where: n =1, 2, ...; and —100.0 < x; < 100.0 for 2 = 1, 2, ..., n. This function
has the global minimum f, =0 at ., = (0, 0, ..., 0).

The fourth was the Griewank’s function (see Yang, 2010b, or Bratton and
Kennedy, 2007):

4000 Z H o8 ( ) ®)

where: n =1, 2, ...; and —600.0 < x; < 600.0 for ¢ = 1, 2, ..., n. This function
has the global minimum f, =0 at ., = (0, 0, ..., 0).

The fifth was the Rastrigin’s function (see Yang, 2010b, or Bratton and
Kennedy, 2007):

f(z) =10n+ Z [27 — 10 cos(2ma;)] 9)

i=1

where: n =1, 2, ...; and —5.12 < z; < 5.12 for ¢ = 1, 2, ..., n. This function
has the global minimum f, =0 at ., = (0, 0, ..., 0).

The sixth was the Schwefel’s function (see Yang, 2010b, or Bratton and
Kennedy, 2007):

le sin ( | ) (10)

where: n =1, 2, ...; and —500 < z; < 500 for ¢ = 1, 2, ..., n. This function has
the global minimum f, ~ —418.9829-n at z,. = (420.9687,420.9687, ..., 420.9687).

To ensure that the evaluation function be positive for all individuals and
all the possible numbers of dimensions, the following modification of Schwefel’s
function was considered:

:——lesm( |:171)+500 (11)

This function has the global minimum of f, ~ 81.0171 at the same point as the
original function,
xx = (420.9687,420.9687, ..., 420.9687).

The optimisation task, for all the here presented test functions, is their
minimisation (minimisation of the test - objective function). But all of the
compared algorithms were built in such a way that they seek the maximum
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of the fitness function. Therefore, it was necessary to apply an appropriate
transformation of the objective function. All of the compared algorithms had
the same fitness function calculated on the basis of the objective function as:

1

—_— 12
Fobj+1 ( )

Ffitness =

Of course, such a transformation can make it more difficult to find the optimum
for some of the test problems. Yet, if one is not comparing the results to those
of other researchers, it does not influence the overall rating of the proposed
algorithm.

The here presented AEA algorithm has 15 basic parameters. During simu-
lations, the following values were used (tested):

N, — {250; 500; 1000};

Nre — {25; 50; 75; 100; 200};
Npr = {3 5; 10};

Pmpl;,  Pmhe; Pmpr — {0.07};
Nt = {2};

Nin  — {10; 100; 200}

Hyp = {0.1};

Zppr  — {100};

wn — {3}

min., mazx. — (-0.5;2.0);
Niter — {100 000, 1 000 000};
Wyp  — {1} coeflicient of initial size.

In the simulations, the following values for EA were used (tested):

population size {50; 100; 200};

crossover probability {0.2; 0.5; 0.8};

mutation probability {0.03; 0.07; 0.15};

linear scaling of fitness function {0; 1}(off/on);
elitist selection {0; 1}(off/on);

one point crossover, arithmetic crossover.

In the respective simulations, the following values for PSO were used (tested):
e coefficient ¢ {0.7; 1.7; 2.0};

The

coefficient ¢; {0.1; 0.5};

coefficient ¢z {0.1; 0.2; 0.5};

coefficient ¢z {0.1; 0.2; 0.5};

extent (radius) of the neighbourhood {3; 5; 10};

number of particles {50; 100};

number of iterations between subsequent disturbances {50; 160; 500} (disturbance
means random relocation of all particles).

adopted formula for the particle velocity in the PSO was:
vptt = corfup + el (yh — k) + carb (W) — o) + earh(up™t — af)

t

xp, — particle position in previous iteration in k—th dimension,
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yt  — the best position of this particle found so far,
yg*t — the best position within the swarm found so far,
y*t — the best position within the particle’s neighbourhood found so far.

As a part of the algorithm stability testing, the impact of the parameters,
which control particular algorithms and the impact of random selection on the
results was analysed for both functions with 10 and 100 variables (n =10 and
n =100). For each algorithm, combinations of control parameters were selected
which, as the experience shows, should lead to obtaining good results. Thirty-
five such combinations were selected for the Evolutionary Algorithm, 36 for
the PSO, and 33 for the Ecosystem Algorithm. Ten test runs were performed
for each combination of parameter settings (with different staring points of
the random number generator) in order to test how randomness affects the
results. The total number of simulations for (n =10 variables) AEA was 1980 (33
(number of parameter combinations) x 10 (runs for each combination) x 6 (test
functions)). Consequently, the total number of simulations for all algorithms
and all dimension sets exceeded 12 000.

The results were summarized for two scenarios — for 10 and 100 variables of
the target function (Tables 1 - 6) and for 1000 variables (Tables 7 - 12).

The tables represent:

e for the combination of control parameters values, for which the best results
were obtained: the minimum value of the criterion function (min_Best),
the maximum value (max Best) and the average value (avg Best) from
10 test runs; the time to obtain the best result (time_min Best) and the
average time to obtain the results (time_avg Best) from 10 test runs are
provided; the number of fitness function evaluations to obtain the best re-
sult (ffe_min_Best) and the average number of fitness function evaluations
to obtain results (ffe_avg Best) from 10 test runs are provided,

e for all test runs: the average value (avg_All) and the maximum value
(max_All) of the criterion function.

All algorithms performed 100,000 iterations.

Based on the test results for the target function with 100 variables, the best
settings for particular algorithms were selected. For these settings, tests with
target function with 1,000 variables were conducted. Like in the previous tests,
all algorithms performed 100,000 iterations.

The results presented in Tables 7 through 11 show that all optimization
problems with 1,000 variables are complex ones, and that the Ecosystem Algo-
rithm managed not to get stuck in the local optimum and ‘attempted’ to reach
the global optimum in most cases.

To check the behaviour of the algorithms for a large number of iterations,
simulations with one million (10°) iterations were performed (Figs. 10 through
15). Fig. 10 presents how the outputs varied with time for Ackley’s function.
The different lengths of curves for particular algorithms result from different
durations per iteration for particular algorithms. The Ecosystem Algorithm
achieves the successive levels of the target function: 10~ after about 2,300 [s],
10~2 after about 3,000 [s] and 102 after about 3,900 [s]. Finally, it arrives at
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Table 1. The comparison of factors describing the stability of particular al-
gorithms for the Ackley’s function with 10 and 100 variables (Best values are
indicated in italics, in this and in the following tables)

Variable num- | 10 100

ber

Algorithm EA PSO AEA EA PSO AEA
Min_Best 4.1E-03 | 4.0E-15 | 4.0E-15 | 4.1E-01 | 1.1E-04 | 1.9E-10
Max_Best 4.1E-03 | 4.0E-15 | 4.0E-15 | 7.4E-01 | 1.9E-04 | 3.1E-08
Avg Best 4.1E-03 | 4.0E-15 | 4.0E-15 | 5.4E-01 | 1.5E-04 | 7.2E-09
Time_min_Best | 1.6 5.2 5.6 47.8 231.1 130.4

[s]

Time_avg Best | 2.8 8.3 8.7 49.3 211.4 125.3

[s]

Ffe_min_Best 599 600 | 15109001 11503001 4836250| 9969800 | 5292634
Ffe_avg_Best 1038520 2392910 1780045 4955365| 9102970 | 5278690
Avg All 3.3E-01 | 4.4E-01 | 1.1E-03 | 8.2E4+00 | 8.5E+00 | 9.3E-01
Max_All 1.2E+01| 4.3E4+00| 7.2E-02 | 2.1E+01 | 1.9E+401 | 8.6E+00

Table 2. Comparison of factors describing the stability of particular algorithms
for the Rosenbrock’s function with 10 and 100 variables

Variable num- | 10 100

ber

Algorithm EA PSO AEA EA PSO AEA
Min_Best 4.5E-04 1.0E-14 | 2.0E-16 | 1.3E+02 | 1.8E-01 | 8.7E-05
Max_Best 1.5E+01 | 1.5E-14 | 1.0E-15 | 3.4E+02 | 7.0E+01| 1.5E+402
Avg Best 5.3E+00 | 1.2E-14 | 6.8E-16 | 2.8E+02 | 8.8E+00 | 7.8E+01
Time_min_Best | 52.2 34.0 33.3 61.0 154.0 113.5

[s]

Time_avg_Best | 30.9 35.6 37.1 61.9 160.8 105.7

[s]

Ffe_min_Best 18914 200] 9368000] 9145485| 4907350 | 5819200 | 3044410
Ffe_avg_Best 11200600 9596160 10197909 4968765 | 6134140 | 2832436
Avg All 5.9E+00 | 3.4E+01| 4.3E-03 | 1.8E+07 | 2.6E+07 | 1.4E+04
Max_All 2.2E+4+01 | 5.8E+02| 6.7E-01 | 4.6E+08 | 1.4E+08 | 4.5E+06
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Table 3. Comparison of factors describing the stability of particular algorithms
for De Jong’s function with 10 and 100 variables

Variable num- | 10 100

ber

Algorithm EA PSO AEA EA PSO AEA
Min_Best 2.3E-08 | 6.2E-17 | 3.6E-17 | 2.9E-02 1.8E-15 | 5.4E-16
Max_Best 5.2E-07 | 1.1E-16 | 1.1E-16 | 8.4E-02 2.9E-15 | 9.8E-16
Avg Best 1.8E-07 | 9.2E-17 | 9.1E-17 | 5.2E-02 2.2E-15 | 7.6E-16
Time_min_Best | 11.2 4.0 9.6 146.5 213.5 238.6

[s]

Time_avg Best | 11.1 3.7 14.4 146.8 216.3 217.1

[s]

Ffe_min_Best 4829100| 1257400 2081870] 19802600, 9775900 | 1306444
Ffe_avg_Best 4713115 1197600 3119115 19822600, 9902920 | 11859492
Avg All 8.3E-04 | 1.9E+00| 4.6E-05 | 1.5E4+04 | 2.1E+04 | 2.3E4+01
Max_All 4.4E-02 | 3.9E401| 1.4E-02 | 1.7TE+05 | 8.3E+404 | 5.9E+03

Table 4. Comparison of factors describing the stability of particular algorithms
for the Griewank’s function with 10 and 100 variables

Variable num- | 10 100

ber

Algorithm EA PSO AEA EA PSO AEA
Min_Best 4.9E-04 | 0.0E+00| 1.1E-16 5.0E-01 3.9E-13 1.1E-16
Max_Best 9.6E-02 | 3.0E-02 | 5.2E-02 9.8E-01 1.5E-02 | 1.5E-02
Avg_Best 5.7E-02 | 1.3E-02 | 1.6E-02 7.0E-01 3.2E-03 1.5E-03
Time_min_Best| 9.0 1.4 20.2 296.0 299.4 292.8

[s]

Time_avg Best | 7.9 15.4 36.5 294.6 290.2 273.8

]

Ffe_min_Best 3030700] 350200 | 6479280 | 19994200, 10000000 10826460
Ffe_avg_Best 2623535 4015390 11776482 19828700 9983640 | 10253494
Avg_All 5.7E-02 | 3.9E-01 | 4.1E-02 | 1.4E402 | 1.9E+02 | 2.0E-01
Max_All 2.1E-01 | 1.4E+00| 1.6E-01 1.6E+03 | 7.5E+02 | 1.7E+01
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Table 5. Comparison of factors describing the stability of particular algorithms
for the Rastrigin’s function with 10 and 100 variables

Variable num- | 10 100

ber

Algorithm EA PSO AEA EA PSO AEA
Min_Best 3.8E-05 | 0.0E+00| 0.0E+00| 2.3E4+00 | 7.0E+00 | 6.3E-03
Max_Best 2.2E-04 | 0.0E+00| 0.0E+00| 5.7E+00 | 6.7E+01 | 1.9E+01
Avg Best 1.2E-04 | 0.0E4+00| 0.0E4+00| 4.0E+00| 3.2E+401 | 1.1E401
Time_min_Best | 13.9 0.3 5.0 62.4 262.3 328.5

[s]

Time_avg_Best | 13.2 1.0 6.2 63.7 261.4 328.5

[s]

Ffe_min_Best 4990000/ 93300 1795460 4868 750| 9970000 | 12995060,
Ffe_avg_Best 4721490| 271 760 | 2187460] 4973340| 9959900 | 12964 746
Avg All 7.1E-04 | 7.5E+00| 2.8E-02 | 1.4E+02 | 6.1E+02 | 8.5E+01
Max_All 3.0E-02 | 2.3E+01| 4.1E+00| 1.6E4+03 | 1.2E+03 | 5.2E+02

Table 6. Comparison of factors describing the stability of particular algorithms
for the Schwefel’s (11) function with 10 and 100 variables

Variable 10 100

number

Algorithm EA PSO AEA EA PSO AEA
Min_Best 8.1E+01| 8.1E+01| 8.1E+01| 8.2E+01 | 1.0E+02 | 8.1E+01
Max_Best 8.1E+01| 8.1E+01| 8.1E+01| 8.2E+01 | 1.4E+02 | 9.2E+01
Avg_Best 8.1E+01| 8.1E+01| 8.1E+01| 8.2E+01 | 1.2E+02 | 8.5E+01
Time_min_Best| 6.7 4.0 1.9 51.8 247.1 262.5

[s]

Time_avg Best | 13.1 24.3 5.8 51.5 249.0 262.2

]

Ffe_min_Best 2991500] 1190600 439 150 | 4990800 | 9949700 | 15499285
Ffe_avg_Best 5879860 7149830 1342830 4976060 | 9989820 | 15465 357
Avg_All 8.1E+401| 8.9E+01| 8.1E+01| 1.5E4+02 | 1.9E+02 | 1.4E+02
Max_All 9.5E+01| 1.8E+02| 1.2E+02| 4.0E4+02 | 3.3E+02 | 2.9E+02
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Table 7. Comparison of factors of particular algorithms for the Ackley’s function
with 1,000 variables

Table 8. Comparison of factors of particular algorithms for the Rosenbrock’s

Variable number 1000

Algorithm EA PSO AEA
Min_Best 1.9E+401 1.9E+401 3.2E+4+00
Max_Best 1.9E401 2.0E+01 4.9E+00
Avg_Best 1.9E+401 2.0E+01 4.2E+00
Time_min Best [s] | 1463.8 276.3 1066.3
Time_avg Best [s] | 1437.2 101.2 1062.9
Ffe_min Best 19 571 200 1 248 600 5 298 994
Ffe_avg_Best 19 287 820 448 490 5 297 812

function with 1,000 variables

Table 9. Comparison of factors of particular algorithms for the De Jong’s func-

Variable number 1000

Algorithm EA PSO AEA
Min_Best 3.1E+09 8.6E+06 3.2E+03
Max_Best 3.5E+09 1.1E+408 3.9E+03
Avg_Best 3.4E+09 2.6E+407 3.6E+03
Time_min Best [s] | 541.7 1116.6 3034.7
Time_avg Best [s] | 530.1 1144.1 3045.0
Ffe_min Best 4 989 850 4 505 400 12 999 280
Ffe_avg Best 4 863 405 4 609 910 12 996 668

tion with 1,000 variables

Variable number 1000

Algorithm EA PSO AEA
Min_Best 1.1E406 4.4E+02 4.9E-01
Max_Best 1.2E4-06 5.4E402 2.8E+400
Avg_Best 1.1E4-06 5.0E4-02 1.0E+00
Time_min Best [s] | 1197.7 2088.7 3648.7
Time_avg Best [s] | 1187.0 2104.4 3655.5
Ffe_min Best 19 753 200 9 987 200 21 000 340
Ffe_avg_Best 19 511 000 9 988 020 20 998 901
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Table 10. Comparison of factors of particular algorithms for the Griewank’s
function with 1,000 variables

Variable number 1000

Algorithm EA PSO AEA
Min_Best 9.7E+03 4.8E+00 1.1E-01
Max_Best 1.0E+04 6.3E+00 8.0E-01
Avg Best 1.0E404 5.6E+400 4.9E-01
Time_min Best [s] | 2729.7 2761.4 2787.5
Time_avg Best [s] | 2684.7 2794.9 2766.5
Ffe_min Best 19 463 600 9 987 100 10 991 520
Ffe_avg Best 19 115 940 9 990 070 10 906 660

Table 11.

Variable number 1000

Algorithm EA PSO AEA
Min_Best 9.5E+03 4.1E+03 1.0E+03
Max_Best 9.9E+03 5.1E+403 1.6E+03
Avg_Best 9.7E+03 4.7E+03 1.2E+403
Time_min Best [s] | 539.3 2089.2 3136.4
Time_avg Best [s] | 542.9 2099.3 3171.8
Ffe_min_Best 4 886 150 8 262 500 12 962 560
Ffe_avg_Best 4 911 670 8 250 460 12 987 958

Variable number 1000

Algorithm EA PSO AEA
Min_Best 3.2E+02 1.7E+02 2.0E+02
Max_Best 3.3E+02 2.2E+02 2.5E4+02
Avg Best 3.2E+02 1.8E+02 2.4E+402
Time_min Best [s] | 468.0 2409.0 2509.0
Time_avg Best [s] | 466.9 2366.5 2484.5
Ffe_min Best 4 955 700 9933 300 15 486 995
Ffe_avg_Best 4 950 570 9 949 680 15 451 750

Comparison of factors of particular algorithms for the Rastrigin’s
function with 1,000 variables

Table 12. Comparison of factors of particular algorithms for the Schwefel’s (11)
function with 1,000 variables
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4.66 x 10~% after 9,577 [s]. Fig. 11 shows how the outputs varied with time
for Rosenbrock’s function with 10°¢ iterations. Unfortunately, the Ecosystem
Algorithm did not come as close to the local optimum as it did in the previous
test. Yet, it was exploring the solution space until the end of simulation.

25
f(x)

20 A

—AEA
--PSO
EA

0 5000 10000 15000 20000 25000  timels]

Figure 10. Ackley’s function in the simulations with 10° iterations

5. Conclusions

The development and functioning of natural ecosystems are by all means fasci-
nating. Virtually any place on the Earth is a sort of ecosystem and is used, in
one way or another, by various organisms, with different relationships between
them. What is also surprising is the efficiency with which organisms use the
ecosystem’s resources and a specific self-organisation of the ecosystem, which
usually leads to its self stabilisation.

However, ecosystem modelling is a complex problem. The ecosystem model
proposed in this paper is — obviously — a simplified one, however, the principal
relations between its constitutive parts are maintained. The primary use of this
model has been to develop an effective optimization method on its basis. The
ecosystem method thus established is one of the most complex Computational
Intelligence methods, with a relatively high number of control parameters. The
proposed Ecosystem Algorithm is also rather complex in structure, because it
is based on three different populations, related to each other through various
relationships. Mutual interactions and relationships between populations mimic
definite selected processes occurring in a natural ecosystem. Each population
is governed by different rules for searching through the fitness function, and
is subject to different rules of survival. The tests performed show that the
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Figure 11. Rosenbrock’s function in simulations with 10 iterations
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Figure 12. De Jong’s function in simulations with 10° iterations
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Figure 13. Griewank’s function in simulations with 10 iterations
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Figure 15. Schwefel’s (11) function in simulations with 10° iterations

structural complexity provides no advantage to the Ecosystem Algorithm over
reference methods for the simplest test problems with 10 variables. However,
the advantage is clear for more complex problems with 100 and 1,000 variables.
For the problems with 1,000 variables, the proposed algorithm was the only one
that came close to the optimum solution in most cases.

The Artificial Ecosystem Algorithm in this form proved also to be useful in
solving continuous and combinatorial problems in electrical power engineering
(see Baczyrniski, 2013). However, this form should be treated as an initial pro-
posal for the use of ecosystem relations for optimisation purposes, which shall
be developed.
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