PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat Flux Distribution Estimation for CSP Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the concept of a new method for the estimation of the heat flux distribution and the total power in CSP applications is presented. This method requires appropriate analysis of the temperature evolution on a target, or directly on a receiver. A 3-D thermal conduction model with boundary conditions to take into account the convection and radiation losses has been developed. A parametric analysis was performed and we checked how the physical parameters affect the applicability of the method. Having proven numerically the potential of this method, it was experimentally implemented in the central tower CSP plant of The Cyprus Institute at PROTEAS facilities successfully. Finally, experience gained from the numerical and experimental application of this method is discussed.
Rocznik
Strony
56--66
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • Energy, Environment, Water Research Center of the Cyprus Institute
  • Energy, Environment, Water Research Center of the Cyprus Institute
  • The Cyprus Institute
Bibliografia
  • [1] Roger M., Herrmann P., Ulmer S., Ebert M., Prahl C., Gohring F.: Techniques to measure solar flux density distribution on large-scale receivers. Journal of Solar Energy Engineering 126, 2014, 031013.
  • [2] King D.L., Arvizu D.E.: Heliostat characterization at the central receiver test facility. Journal of Solar Energy Engineering 103, 1981, 82-88.
  • [3] Kodama T., Gokon N., Matsubara K., Yoshida K., Koikari S., Yagase Y., Nakamura K.: Flux measurement of a new beam-down solar concentrating system in Miyazaki for demonstration of thermochemical water splitting reactors, Energy Procedia 49, 2014, 1990-1998.
  • [4] Bellestrin J., Estrada C.A., Rodriguez-Alonso M., Perez-Rabago C., Langley L.W., Barnes A.: High-heat-flux sensor calibration using calorimetry, Metrologia 41, 2004, 314-318.
  • [5] Ballestrin J., Estrada C.A., Rodriguez-Alonso M., Perez-Rabago C., Langley L.W., Barnes A.: Heat flux sensors: Calorimeters or radiometers?, Solar Energy 80, 2006, 1314-1320.
  • [6] Guillot E., Alxneit I., Ballestrin J., Sans J.L., Willsh C.: Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement, Energy Procedia 49, 2014, 2090- 2099.
  • [7] Ulmer S., Reinalter W., Heller P., Lupfert E., Martinez D.: Beam Characterization and improvement with a flux mapping system for dish concentrators, Journal of Solar Energy Engineering 124, 2002, 182-188.
  • [8] Ho C.K., Khalsa S.S.: A photographic flux mapping method for concentrating solar collectors and receivers, Journal of Solar Energy Engineering 134, 2012, 041004. [9] Lee H., Chai K., Kim J., Lee S., Yoon H., Yu C., Kang Y.: Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux, Energy 66, 2014, 63-69.
  • [10] Ferriere A., Volut M., Perez A., Volut Y.: In-situ measurement of concentrated solar flux and distribution at the aperture of a central solar receiver, AIP Conf. Proc. 1734, Solar PACES 2015, 130007-1-130007-8.
  • [11] Ebert M., Benitez D., Roger M., Korzynietz R., Brioso J.A.: Efficiency determination of tubular solar receivers in central receiver systems, Solar Energy 139, 2016, 179-189.
  • [12] Papanicolas C.N., Bonanos A.M., Georgiou M.C., Guillen E., Jarraud N., Marakkos C., Montenon A., Stiliaris E., Tsioli E., Tzamtzis G., Votyakov E.V.: CSP cogeneration of Electricity and Desalinated Water at the Pentakomo Field Facility, AIP Conference Proceedings 1734, SolarPACES 2016, 100008.
  • [13] Hirsch C., Numerical computation of internal and external flows, John Wiley & Sons, Vol. 1, 1988.
  • [14] Courant R., Friedrichs K., Lewy H.: Uber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen 100, 32-74.
  • [15] Cengel Y.A.: Heat transfer - A practical approach, McGraw Hill, second edition, 2003.
  • [16] Churchill S.W., Chu H.H.S.: Correlating Equations for Laminar and Turbulent free Convection from a Vertical plate, International Journal of Heat Mass Transfer 18, 1975, 1323.
  • [17] Fujii T., Imura H.: Natural Convection Heat Transfer from a plate in arbitrary inclination, International Journal of Heat Mass Transfer 15, 1972, 755.
  • [18] Schwarzbolz P., Schmitz M., Pitz-Paal R.: Visual HFCAL - a software for layout and optimization of heliostat fields, SolarPACES 2009, Berlin, September 15-18.
  • [19] Collado F.J.: One-point fitting of the flux density produced by a heliostat, Solar Energy 84, 2010, 673-684.
  • [20] Stokes K.G., Stiliaris E., Bonanos A.M., Georgiou M.C., Guillen E., Mon tenon A., Papanicolas C.N.: The Control System at PROTEAS, AIP Conference Proceedings 2033, 2018, 210019.
  • [21] Matlab R2016a, The Mathworks, Inc., Natick, Massachusetts, United States.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db6fc733-11a3-417d-87aa-678d682dc494
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.