PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On magnetization deviations as the dominant cause for vibration harmonics in the spectrum of a PMSM drive

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Production deviations have a remarkable effect on the radiated sound of electrical machines, introducing additional signal components besides the fundamental field waves which significantly change and enrich the subjectively perceived sound characteristic. In literature these harmonics are mainly traced back to dynamic eccentricity, which modulates the fundamental field waves. In this paper a thorough mechanic and electromagnetic analysis of a modern, well-constructed traction drive (permanent magnet synchronous machine) is performed to show that for this typical rotor configuration dynamic eccentricity is negligible. Instead, deviations in the rotor magnetization are shown to be the dominant cause for vibration harmonics.
Rocznik
Strony
719--730
Opis fizyczny
Bibliogr. 16 poz., rys., wz.
Twórcy
  • Institute of Electrical Machines (IEM), RWTH Aachen University Germany
  • Institute of Systems Engineering and Machine Elements (MSE), RWTH Aachen University Germany
  • Institute of Electrical Machines (IEM), RWTH Aachen University Germany
  • Institute of Systems Engineering and Machine Elements (MSE), RWTH Aachen University Germany
autor
  • Institute of Systems Engineering and Machine Elements (MSE), RWTH Aachen University Germany
autor
  • Institute of Electrical Machines (IEM), RWTH Aachen University Germany
Bibliografia
  • [1] Nahlaoui M.A., Steins H., Kulig S., Exnowski S., Comparison of numerically determined noise of a 290 kW induction motor using FEM and measured acoustic radiation, Archives of Electrical Engineering, vol. 62, pp. 195–207 (2013), DOI: 10.2478/aee-2013-0015.
  • [2] Gieras J.F., Wang C., Cho Lai J., Noise of polyphase electric motors, CRC Press Taylor and Francis Group (2006).
  • [3] Hu Y., Wei H., Chen H., Sun W., Zhao S., Li L., Vibration Study of Permanent Magnet Synchronous Motor Base on Static Eccentricity Model, 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, pp. 1–5 (2019), DOI: 10.1109/ICEMS.2019.8922162.
  • [4] Li Y., Wu H., Xu X., Cai Y., Sun X., Analysis on electromechanical coupling vibration characteristics of in-wheel motor in electric vehicles considering air gap eccentricity, Archives of Electrical Engineering, vol. 5, pp. 851–862 (2019), DOI: 10.24425/bpasts.2019.130882.
  • [5] Lundin U., Wolfbrandt A., Method for Modeling Time-Dependent Nonuniform Rotor/Stator Configurations in Electrical Machines, IEEE Transactions on Magnetics, vol. 45, iss. 7, pp. 2976–2980 (2009), DOI: 10.1109/TMAG.2009.2015052.
  • [6] Zhang M., Macdonald A., Tseng K.-J., Burt G.M., Magnetic Equivalent Circuit Modeling for Interior Permanent Magnet Synchronous Machine under Eccentricity Fault, 48th International Universities’ Power Engineering Conference (UPEC), Dublin, Ireland, pp. 1–6 (2013), DOI: 10.1109/UPEC.2013.6715044.
  • [7] Ebrahimi B.M., Faiz J., Roshtkhari M.J., Static-, Dynamic-, and Mixed- Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors, IEEE Transactions on industrial electronics, vol. 56, no. 11, pp. 4727–4739 (2009), DOI: 10.1109/TIE.2009.2029577.
  • [8] Rosero J.A., Cusido J., Garcia A., Ortega J.A., Romeral L., Broken Bearings and Eccentricity Fault Detection for a Permanent Magnet Synchronous Motor, 32nd Annual Conference on IEEE Industrial Electronics (IECON), Paris, France, pp. 964–969 (2006), DOI: 10.1109/IECON.2006.347599.
  • [9] Ilamparithi T., Nandi S., Saturation independent detection of dynamic eccentricity fault in salient-pole synchronous machines, IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Valencia, Spain, pp. 336–341 (2013), DOI: 10.1109/DEMPED.2013.6645737.
  • [10] Goktas T., Zafarani M., Akin B., Discernment of Broken Magnet and Static Eccentricity Faults in Permanent Magnet Synchronous Motors, IEEE Transactions on Energy Conversion, vol. 31, iss. 2, pp. 578–587 (2016).
  • [11] Coenen I., van der Giet M., Hameyer K., Manufacturing Tolerances: Estimation and Prediction of Cogging Torque Influenced by Magnetization Faults, IEEE Transactions on Magnetics, vol. 48, iss. 5, pp. 1932–1936 (2012), DOI: 10.1109/TMAG.2011.2178252.
  • [12] Gasparin L., Fiser R., Cogging torque sensitivity to permanent magnet tolerance combinations, Archives of Electrical Engineering, vol. 62, pp. 449–461 (2013), DOI: 10.2478/aee-2013-0036.
  • [13] International Organization for Standardization, ISO 1940-1: Mechanical vibration — Balance quality requirements for rotors in a constant (rigid) state, Geneva, Switzerland (2003).
  • [14] https://www.smalley.com/wave-springs/bearing-preload, accessed March 2020.
  • [15] Henrotte F., Felden M., van der Giet M., Hameyer K., Electromagnetic force computation with the Eggshell method, 14th International Symposium on Numerical Field Calculation in Electrical Engineering (IGTE), Graz, Austria (2010).
  • [16] Herold T., Franck D., Schröder M., Böhmer S., Hameyer K., Transientes Simulationsmodell für die akustische Bewertung elektrischer Antriebe, e & i Elektrotechnik und Informationstechnik, vol. 133, no. 2, pp. 55–64 (2016).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db6eae9b-a4c2-405e-a02c-3af27d56c994
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.