Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A synthetic procedure has been developed for the synthesis of 1,4-diamino- 3,6-dinitropyrazolo[4,3-c]pyrazole (DADNP) via N-amination reaction. Its derivatives, 4,4’-(triaz-1-ene-1,3-diyl)bis(1-amine-3,6-dinitropyrazolo[4,3-c] pyrazole) (TBADNP) and 1,4-dinitramino-3,6-dinitropyrazolo[4,3-c]pyrazole (DNADNP), were first designed and synthesized by the diazotization and nitrification of amino group, and their structures were characterized by IR, 1H NMR, 13C NMR, elementary analysis and MS. The thermal properties of target compounds were studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). The thermal decomposition peak temperatures of DADNP, TBADNP and DNADNP are 227, 236 and 288 °C, respectively. Results show that the derivatives of 1,4-diamino-3,6-dinitropyrazolo[4,3-c]pyrazole have better thermal stability.
Rocznik
Tom
Strony
321--331
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Xi'an Modern Chemistry Research Institute, Xi’an 710065, China
autor
- Xi'an Modern Chemistry Research Institute, Xi’an 710065, China
autor
- Xi'an Modern Chemistry Research Institute, Xi’an 710065, China
autor
- Xi'an Modern Chemistry Research Institute, Xi’an 710065, China
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
autor
- Xi'an Modern Chemistry Research Institute, Xi’an 710065, China
Bibliografia
- [1] Singh R.P., Gao H.X., Meshri D.T., Shreeve J.M., Nitrogen-rich Heterocycles, Struct. Bond., 2007, 125, 35-83.
- [2] Klapötke T.M., New Nitrogen-rich High Explosives, Struct. Bond., 2007, 125, 85-121.
- [3] Klapötke T.M., Piercey D.G., 1,1’-Azobis(tetrazole): A Highly Energetic Nitrogenrich Compound with a N10 Chain, Inorg. Chem., 2011, 50, 2732-2734.
- [4] Wang Y.L., Zhao F.Q., Ji Y.P., Pan Q., Yi J.H., An T., Wang W., Yu T., Lu X.M., Synthesis and Thermal Behaviors of 4-Amino-3,5-dinitro-1H-pyrazole, J. Anal. Appl. Pyrol., 2012, 98, 231-235.
- [5] Hou K.H., Ma C.M., Liu Z.L., Synthesis, Characterization and Theoretical Study of 2-Azido-4-nitroimidazole Based Energetic Salts, Chin. Chem. Lett., 2014, 25, 438-440.
- [6] Li Y.N., Zhang Z.Z., Zhou Y.S., Wang B.Z., Shang Y., Study on the Synthesis, Structure Characterization and Thermal Performance of 3,4-Disubstituted Furoxano Derivatives, Acta Chimica Sinica, 2011, 6, 701-708.
- [7] Li Y.N., Zhang Z.Z., Ge Z.X., Wang B.Z., Lai W.P., Luo Y.F., Study of Furoxan Derivatives for Energetic Applications, Chin. J. Chem., 2013, 31, 520-524.
- [8] Zhao X.H., Ye Z.W., A Facile Synthesis of a Novel Energetic Surfactant 1-Amino-3-dodecyl-1,2,3-triazolium nitrate, Chin. Chem. Lett., 2014, 25, 209-211.
- [9] Li Y.C., Cai Q., L S.H.i, Zhang H.J., Sun C.H., Yu Y.Z., Pang S.P., 1,1’-Azobis-1,2,3-triazole: A High-nitrogen Compound with Stable N8 Structure and Photochromism, J. Am. Chem. Soc., 2010, 132, 12172-12173.
- [10] Thottempudi V., Gao H.X., Shreeve J.M., Trinitromethyl-substituted 5-Nitro- or 3-Azo-1,2,4-triazoles: Synthesis, Characterization, and Energetic Properties, J. Am. Chem. Soc., 2011, 133, 6464-6471.
- [11] Philip P.F., Lee G.S., Mitchell A.R., Schmidt R.D., A Review of Energetic Materials Synthesis, Thermochim. Acta, 2002, 384, 187-204.
- [12] Vinogradov V.M., Dalinger I.L., Shevelev S.A., N-amination of Pyrazoles: A General Approach, Mendeleev Commun., 1993, 3(3), 111.
- [13] Tang Y.X., Yang H.W., Wu B., Ju X.H., Lu C.X., Cheng G.B., Synthesis and Characterization of A Stable, Catenated N11 Energetic Salt, Angew. Chem., Int. Ed., 2013, 52, 1-4.
- [14] Wu X., Long X.P., He B., Jiang X.H., VLW Equation of State of Detonation Products, Science in China Series B: Chemistry, 2009, 52, 605-608.
- [15] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A.Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT, USA, 2009.
- [16] Luo Y.F., Ge Z.X., Wang B.Z., Zhang H.H., Liu Q., Synthetic Improvement of DNPP, Chin. J. Energ. Mater., 2007, 15, 205-207.
- [17] Gouki F., Yuichi K., Tanezo T., Reactivity of 4-Diazo-3,5-dimethylpyrazole. I: Intramolecular Cyclization Reaction and the Reaction Mechanism, Yakugeku Zasshi, 1974, 94, 17-22.
- [18] Stern A.G., Moran J.S., Jason J.R., Sitzman M.E., Pagoria P.F., Lee G.S., Dinitropyrazolopyrazole-amine Salts Useful in Gun Propellants, US Patent 6 706 889 Bl, 2004.
- [19] Infantes L., Foces-Foces C., Claramunt R.M., López C., Eiguero J., Aminopyrazoles and Their Conjugated Acids: An X-ray Study of 3,5-Dimethyl-4-aminopymzole and the Picrate of 3(5)-Aminopyrazole, J. Heterocycl. Chem., 1999, 36, 595-600.
- [20] Shevelev S.A., Dalinger I.L., Shkineva T.K., Nitropyrazole, Izvestia Akademii Nauk. Ser. Khim., 1993, 6, 1108-1110.
- [21] Li Y.N., Tang T., Lian P., Luo Y.F., Yang W., Wang Y.B., Li H., Zhang Z.Z., Wang B.Z., Synthesis, Thermal Performance and Quantum Chemistry Study on 1,4-Diamino-3,6-dinitropyrazolo[4,3-c]pyrazole (LLM-119), Chin. J. Org. Chem., 2012, 32, 580-588.
- [22] a) Kamlet M.J., Jacobs S.J., Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C–H–N–O Explosives, J. Chem. Phys., 1968, 48, 23-35; b) Kamlet M.J., Ablard J.E., Chemistry of Detonations. II. Buffered Equilibria, J. Chem. Phys., 1968, 48, 36-42; c) Kamlet M.J., Dickinson C., Chemistry of Detonations. III. Evaluation of the Simplified Calculational Method for Chapman-Jouguet Detonation Pressures on the Basis of Available Experimental Information, J. Chem. Phys., 1968, 48, 43-49.
- [23] Wang R.H., Xu H.Y., Guo Y., Sa R.J., Shreeve J.M., Bis[3-(5-nitroimino-1,2,4-triazolate)]-based Energetic Salts: Synthesis and Promising Properties of a New Family of High-density Insensitive Materials, J. Am. Chem. Soc., 2010, 132, 11904-11905.
- [24] a) http://www.bam.de; b) NATO Standardization Agreement (STANAG) on Explosives, Impact Sensitivity Tests, No. 4489, 1st ed., Sept. 17, 1999; c) NATO Standardization Agreement (STANAG) on Explosives, Friction Sensitivity Tests, No. 4487, 1st ed., Aug. 22, 2002; d) NATO Standardization Agreement (STANAG) on Explosives, Electrostatic Discharge Sensitivity Tests, No. 4490, 1st ed.,, Feb. 19, 2001.
- [25] UN Recommendations on the Transport of Dangerous Goods, Manual of Test and Criteria, 4th revised ed., United Nations Publication, New York and Geneva, 2003; ISBN 92-1-139087-7.
- [26] Meyer R., Köhler J., Homburg A., Explosives, 6th ed., Weinheim, Germany, Wiley-VCH, 2007; ISBN 978-3-527-31656-4.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db630911-3227-49de-9c7f-c834bfa1fa1a