PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of autonomous underwater vehicle mission planning process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the information concerning aspects of the autonomous underwater vehicle (AUV) mission planning process, emphasizing maritime security monitoring and surveillance, and using side-looking sonars as a primary data source. The paper describes characteristic mission plan phases and gives suggestions for the operators, mainly concerning the safety and effectiveness of the AUV mission. The article describes the coverage path planning algorithm, which could be used to create an effective AUV mission plan, considering AUV manoeuvrability, sonar characteristics, and environmental factors. The results of the algorithms have been verified during the real mission of the AUV vehicle.
Rocznik
Strony
art. no. e140371
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, ul. Plac Politechniki 1, 00-661 Warszawa, Poland
  • Air Force Institute of Technology, ul. Ksi˛ecia Bolesława 6, 01-494 Warszawa, Poland
  • Armament Agency, ul. Królewska 1/7, 00-909 Warszawa, Poland
  • 13.MCM Squadron, ul. Śmidowicza 48, 81-106 Gdynia, Poland
Bibliografia
  • [1] M. Cashmore, M. Fox, and D. Long, “Artificial Intelligence Planning for AUV Mission Control,” IFAC-PapersOnLine, vol. 48, no. 2, pp. 262–267, 2015, doi: 10.1016/j.ifacol.2015.06.043.
  • [2] G.B. Zaffari, M. Santos, P.O. Ribeiro, P. Drews-Jr, and S.S. Botelho, “Underwater place recognition using forward-looking sonar images: A topological approach,” J. Field Robot., Oct. 2018, doi: 10.1002/rob.21822.
  • [3] B. Das, M. Panda, B. Subudhi, and B. Pati, “A Comprehensive Review of Path Planning Algorithms for Autonomous Underwater Vehicles,” Int. J. Autom. Comp., vol. 17, no. 3, pp. 321–352, Jun. 2020, doi: 10.1007/s11633-019-1204-9.
  • [4] HELCOM CHEMU, Report to the 16th Meeting of Helsinki Commision 8–11 March 1994 from the Ad Hoc Working Group on Dumped Chemical Munition, Danish Environ. Protec. Agency, 1994.
  • [5] J. Fabisiak and A. Olejnik, “Amunicja chemiczna zatopiona w Morzu Bałtyckim – poszukiwania i ocena ryzyka – projekt badawczy CHEMSEA,” Pol. Hyperbaric Res., vol. 2, no. 39, 2012.
  • [6] J. Bełdowski, T. Knoblochand and C. Böttcher, “Chemical Munitions Dumped in the Baltic Sea – Report of the ad hoc Expert Group to Update and Review the Existing Information on Dumped Chemical Munitions in the Baltic Sea (HELCOM MUNI),” Balt. Mar. Env. Prot. Comm. (HELCOM), 2013.
  • [7] “Sea-Dumped Chemical Munitions,” Helcom, https://helcom.fi/wp-content/uploads/2019/08/chemical-munition.gif. [accessed 12.04.2021].
  • [8] P.E. Hagen, T.G. Fossum and R.E. Hansen, “Applications of AUVs with SAS,” OCEANS 2008, 2008, pp. 1–4, doi: 10.1109/OCEANS.2008.5152013.
  • [9] T.O. Sæbø, S.A.V. Synnes, and R.E. Hansen, “Wideband Inter-ferometry in Synthetic Aperture Sonar,” in IEEE Trans. Geosci. Remote Sens., vol. 51, no. 8, pp. 4450–4459, Aug. 2013, doi: 10.1109/TGRS.2013.2244900.
  • [10] O. Hegrenaes, K. Gade, O.K. Hagen, and P.E. Hagen, “Underwater Transponder Positioning and Navigation of Autonomous Underwater Vehicles,” IEEE Oceans Conf. and Exhibit. (BILOXI 2009), 2009.
  • [11] B. Jalving, K. Gade, and O.K. Hagen, “A Toolbox of Aiding Techniques for the HUGIN AUV Integrated Inertial Navigation System,” Oceans 2003 MTS/IEEE, San Diego, USA, Sep. 2003.
  • [12] “Autonomous Underwater Vehicles,” Kongsberg, https://www.kongsberg.com/maritime/products/marine-robotics/autonomous-underwater-vehicles. [accessed 01. 06.2021].
  • [13] J. Szady, J. Głębocki, and S.J. Kurpiel, “Działania Niszczycieli Min,” Zeszyty Naukowe AMW, vol. XLVII, no. 1(164), 2006.
  • [14] B. Jalving, K. Gade, O.K. Hagen, and K. Vestgård, “A Toolbox of Aiding Techniques for the HUGIN AUV Integrated Inertial Navigation System,” Proc. Oceans 2003, San Diego, CA, USA, Sep. 2003.
  • [15] E. Bovio, B. Jalving, and K. Gade, “Integrated Inertial Navigation Systems for AUVs for REA Applications,” NATO Underwater Research Center Conference Proceedings from MREP 2003, NATO Underwater Research Center, La Spezia, Italy, May 2003.
  • [16] W. Kowalczyk and K. Kozłowski, “Trajectory tracking and collision avoidance for the formation of two-wheeled mobile robots,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 915–924, 2019, doi: 10.24425/bpas.2019.128652.
  • [17] P. Herman and W. Adamski, “Non-adaptive velocity tracking controller for a class of vehicles,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 4, pp. 459–468, 2017, doi: 10.1515/bpasts-2017-0051.
  • [18] L. Rowiński, Pojazdy głębinowe budowa i wyposażenie, WiB, Gdańsk, 2008.
  • [19] T. Kornuta, C. Zieliński, and T. Winiarski, “Universal architectural pattern and specification method for robot control system design,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 3–29, 2020, doi: 10.24425/bpasts.2020. 131827.
  • [20] R. Salamon, Systemy hydrolokacyjne, Gdańskie Towarzystwo Naukowe, Gdańsk 2006.
  • [21] R. Heremans, M. Acheroy, and Y. Dupont, “Motion Compensation in High Resolution Synthetic Aperture Sonar Images,” in Advances in Sonar Technology, Intechopen, Vienna, Feb. 2009, doi: 10.5772/39408.
  • [22] R.J. Urick, Principles of Underwater Sound, Peninsula Pub, Aug. 1996.
  • [23] R.E. Hansen, “Introduction to Synthetic Aperture Sonar,” in Sonar Systems, Intechopen, Norway, 2011, doi: 10.5772/23122.
  • [24] “Nomenclature for Treating the Motion of Submerged Body Through a Fluid,” Technical and Research Bulletin, The Society of Naval Architects and Marine Engineers – SNAME, pp. 3–47, 1989.
  • [25] B. Hofmann-Wellenhof and H. Moritz, “Physical Geodesy,” Springer-Verlag, Wien, 2006, doi: 10.1007/978-3-211-33545-1.
  • [26] Y. Yevenyo and H. Youjian, “Capability of Artificial Neural Network for Forward Conversion of Geodetic Coordinates (φ , λ , h) to Cartesian Coordinates (X, Y, Z),” Math. Geosci., vol. 48, pp. 687–721, 2016, doi: 10.1007/S11004-016-9638-X.
  • [27] D. P. Williams and E. Fakiris, “Exploiting Environmental Information for Improved Underwater Target Classification in Sonar Imagery,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6284–6297, Oct. 2014, doi: 10.1109/TGRS.2013.2295843.
  • [28] M. Żokowski, N. Sigiel, M. Chodnicki, and P. Krogulec, “Procedures concerning preparations of autonomous underwater systems to operation focused on detection, classification and identification, of mine like objects and ammunition,” J. KONBiN., vol. 48, no. 1, pp. 149–168, Dec. 2018, doi: 10.2478/jok-2018-0051.
  • [29] D. Köhntopp, B. Lehmann, D. Kraus, and A. Birk, “Classification and Localization of Naval Mines With Superellipse Active Contours,” IEEE J. Oceanic Eng., vol. 44, no. 3, pp. 767–782, July 2019, doi: 10.1109/JOE.2018.2835218.
  • [30] T. Hoang, S.L. Phung, and P.B. Chapple, “Deep Gabor Neural Network for Automatic Detection of Mine-Like Objects in Sonar Imagery,” IEEE Access, vol. 8, pp. 94126–94139, 2020, doi: 10.1109/ACCESS.2020.2995390.
  • [31] W.A. Connors, P.C. Connor, and T. Trappenberg, “Detection of Mine-Like Object Using Restricted Boltzmann Machines,” 23rd Canadian Conf. on Artificial Intelligence, May 2010, doi: 10.1007/978-3-642-13059-5_47.
  • [32] A. Xenaki and Y. Pailhas, “Conpressive synthetic aperture sonar imaging with distributed optimization,” J. Acoust. Soc. Am., vol. 146, p. 1839, Sep. 2019, doi: 10.1121/1.5126862.
  • [33] D.T. Nguyen, V. Horák, H.T. Tran, L.T. Nguyen, and C.Q. Hoang, “A Motion Model for a Complex-Shaped Remotely Operated Underwater Vehicle,” Adv. Mil. Technol., vol. 15, no. 2, 2020. [Online]. Available: http://aimt.unob.cz/index.php/aimt/article/view/1403.
  • [34] W. Bużantowicz and P.B. Turek, “Autonomous Combat-Support Vehicles in Urban Operations: Tactical and Technical Determinants,” Adv. Mil. Technol., vol. 15, no. 1, 2020. [Online]. Available: http://aimt.unob.cz/index.php/aimt/article/view/1350.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db604ea6-e857-4838-88de-5f200a2256a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.