Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The temporary temperature field correction method constitutes a very effective tool for numerical modelling of solidification. The most general version of this algorithm has been presented by Mochnacki [1] and Szopa [2], The basic idea of the method consists in the computations of temperature field for homogeneous domain (e.g. corresponding to molten metal or solid body) and obtained in this way a discrete temperature field for time t is in adequate way 'rebuilt' using the simple mathematical formulae. In this way the non-homogeneous geometry of solidifying casting is taken into account. This approach can be used in the case of macro modelling, in particular when the one domain approach [3, 4, 5, 6] is applied. The basic assumption of the algorithm presented in [ 1 ] and [2] was that the substitute thermal capacity (STC) [7, 8] of casting material can be approximated by a piece-wise constant function. In this paper the generalization of the method on a case of practically optional function describing a course of STC. In the final part of the paper one can find the example of numerical simulations using this approach.
Metoda poprawiania chwilowego pola temperatury jest bardzo efektywnym narzędziem możliwym do wykorzystania przy modelowaniu procesu krzepnięcia. Przedstawioną w pracach Mochnackiego [1] i Szopy [2] wersję dotyczącą schodkowych zmian zastępczej pojemności cieplnej uogólniono na przypadek funkcji o dowolnym przebiegu.
Czasopismo
Rocznik
Strony
219--222
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
autor
- Institute of Mathematics and Computer Science, Częstochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa, Poland
autor
- Institute of Mathematics and Computer Science, Częstochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa, Poland
Bibliografia
- [1] B. Mochnacki, Application of the BEM for numerical modelling of continuous casting, Computational Mcchanics, 18, 1 (1996) 62-72.
- [2] R. Szopa, Modelling of solidification and crystallization using the combined variant of the BEM, Publ. of the Sil. Techn. Univ., Metallurgy, 54 (1999).
- [3] B. Mochnacki, J.S. Suchy, Numerical methods in computations of foundry processes, PFTA, Cracow (1995).
- [4] N. Sczygiol, G. Szwarc, Application of enthalpy formulation for numerical modelling of casting solidification, Computer Assisted Mechanics and Engineering Sciences, 8 (2001)99-120.
- [5] E. Majchrzak, J. Mendakiewicz, Identification of cast iron substitute thermal capacity, Archives of Foundry, 6, 22 (2006)310-315.
- [6] S. Lara, R. Szopa, Model of cast iron solidification using the artificial mushy zone approach, Archives of Foundry, 6, 22 (2006) 292-297.
- [7] B, Mochnacki, E. Majchrzak, K. Szópa, J.S. Suchy, Inverse problems in the thermal theory of foundry, Scientific Research of the Institute of Mathematics and Computer Science, Częstochowa, 1(5) (2006) 154-179.
- [8] E. Majchrzak, B. Mochnacki, Identification of thermal properties of the system casting-mould, Materials Science Forum 539-543 (2007) 2491-2496.
- [9] E.W. Ruddle, The solidification of casting, Institute of Metals, London (1957).
- 10] C.P. Hong, T. Umeda, Y. Kimura, Numerical models for casting solidification problems, Metall. Trans. B, 158 (1984) 101-105.
- [11] E. Majchrzak, Application of combined BEM-FEM algorithm in numerical modelling of diffusion problems, Computational Mechanics, 18, 1 (1996)55-61.
- [12] R. Szopa, The parametric sensitivity analysis of solidification process, Archives of Foundry 5, 15 (2005) 395-404.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db5ede1e-90e6-4774-968b-2777a5963823