PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of aging time and temperature on diffusion of alloyed copper

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study is to determine the impact of aging time and temperature on the diffusion process of alloying elements inside alloyed copper CuCr0,7, CuFe2 and CuTi4. Design/methodology/approach: It was assumed the activation energy for diffusion of small interstitial atoms is smaller than for large substitute atoms. To determine the influence of aging time and temperature on diffusion of alloying elements in binary copper-based alloys CuCr0,7, CuFe2 and CuTi4 it has been necessary to develop a suitable mathematical model. It has been shown that with the increase of time t, the diffusion pathway L is increased, but the impact of time is not as large as the effect forced by altering temperature. In general, multiple increase of time is equivalent to increasing the temperature by a few degrees. Findings: The model should be used to estimate the average atom pathway of chromium, iron or titanium in copper matrix, caused by diffusion, and the diffusion path into the grain boundary without adsorption as a function of time and temperature aging Research limitations/implications: The model should be used to calculate the influence of temperature and time of aging on the atoms diffusion pathway of the alloying elements in the selected alloyed copper types. Practical implications: The results allow to calculate the average atom pathway L (with reasonable error level) for which the diffused atoms achieve the amount of free energy required to overcome the energetic barrier, on the basis of a combination of heat treatment parameters. Originality/value: This paper presents the impact of the aging temperature on diffusion in the alloyed copper CuCr0.7, CuFe2 and CuTi4.
Rocznik
Strony
27--35
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Non-Ferrous Metals, ul. Sowińskiego 5a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Polymer Materials and Dyes Engineering, ul. Chorzowska 50A, 44-100 Gliwice, Poland
Bibliografia
  • [1] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, The influence of the temperature of tensile test on the structure and plastic properties of copper alloy type CuCr1Zr, Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 123-136.
  • [2] W Ozgowicz, G Nawrat, Electrolytic extractions obtained from Cu-Zr and Cu-Ce alloys and their X-ray phase analysis, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 171-174.
  • [3] S. Gorczyca, M. Blicharski, Recrystallization involving the second phase, Publishing Silesia, Katowice, 1982.
  • [4] J. Dutkiewicz, L. Lityńska, The use of electron diffraction to study changes in interest spinodalny Cu-Ti and Al-Zn, V Conference on Solid State Electron Microscopy, Warsaw-Jadwisin (1978) 149-154 (in Polish).
  • [5] J. Konieczny Z. Rdzawski, W. Głuchowski, Microstructure and properties of CuTi4 alloy, 13th International Materials Symposium (IMSP'2010) Pamukkale University, Denizli, Turkey (2010) 955-962.
  • [6] J. Konieczny, Application of the artificial neural networks for prediction of hardness of alloyed copper, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 529-535.
  • [7] J.A. Cornie, A. Datta, W.A. Soffa, An electron microscopy study of precipitation in Cu–Ti sideband alloys, Metallurgical and Materials Transactions 4 (1973) 727-733.
  • [8] J. Adamczyk, Engineering metallic materials, Silesian University of Technology, Gliwice 2004.
  • [9] J. Adamczyk, Theoretical metallurgy. Plastic deformation, strengthening and cracking, Silesian University of Technology, Gliwice 2002
  • [10] S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Effect of cold work on percipitation hardening of Cu-4,5 mas. %Ti alloy, Materials Transactions 36/8 (1995) 1058-1066.
  • [11] S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys, Journal of Materials Science 34 (1999) 2929-2942.
  • [12] Y. Iijima, K. Hoshino, K.I. Hirano, Diffusion of titanium in copper, Metallurgical Transactions A 8 (1977) 997-1001.
  • [13] Z. Kędzierski, Phase transitions in condensed, University of Science and Teaching, Kraków 2003.
  • [14] ©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
  • [15] J.C. Fisher, Calculation of diffusion penetration curves for surface and grain boundary diffusion, Journal of Applied Physics 22 (1951) 74-80.
  • [16] M.J. Buehler, A. Hartmaier, H. Gao, Atomistic and Continuum Studies of Crack-Like Diffusion Wedges and Dislocations in Submicron Thin Films, Journal of the Mechanics and Physics of Solids 51 (2003) 2105-2125.
  • [17] D. Wolf, V. Yamakov, S.R. Phillpot, A.K. Mukherjee, Deformation mechanism and inverse Hall-Petch behavior in nanocrystalline, Materials International Journal of Materials Research 94 (2003) 1052-1061.
  • [18] H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps, 1st ed., Pergamon Press, Oxford, 1982.
  • [19] J. Konieczny, Shaping the structure and functional properties of titanium bolstered copper precipitation, International OCSCO World Press, Gliwice, 2013.
  • [20] S. Nagarjuna, M. Srinivas, Elevated temperature tensile behaviour of a Cu-4.5Ti alloy, Materials Science and Engineering A 406 (2005) 186-194.
  • [21] S. Nagarjuna, M. Srinivas, Grain refinement during high temperature tensil testing of prior cold worked and peak aged Cu-Ti alloys: Evidence of superplasticity, Materials Science and Engineering A498 (2008) 468-474.
  • [22] S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys, Journal of Materials Science 34 (1999) 2929-2942.
  • [23] D.B. Butrymowicz, J.R. Manning, M.E. Read, Diffusion in copper and copper alloys. Part II Diffusion in systems involving elements of group VIII, Journal of Physical and Chemical Reference Data 1 (1976) 103-200.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db5e1df1-a9b4-447d-9aa7-c739a61f1aec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.