PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Crystalline and Thermal Properties of Nanocomposites Based on Polyamide-6 and Modified Montmorillonite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main operational characteristics of polyamide-6-montmorillonite (PA6/MMT) nanocomposites, which determine their fields of application, mainly depend on the crystal structure and crystallinity of the polymer. Therefore, the study of the crystalline behavior of PA6 in such nanocomposites is of considerable scientific and practical importance. In this work, the structure, crystalline, and thermal properties of nanocomposites based on PA6 and modified MMT prepared in a formic acid solution were investigated using the methods of differential scanning calorimetry (DSC) and X-ray Diffraction (XRD). It was established that during the manufacture of PA6/MMT nanocomposites in a solution, the dominant crystal structures are the thermodynamically stable α structures of PA6. The crystallinity degree of PA6 in nanocomposites is about 1.5 times higher than that of the original PA6. It is shown that after additional thermomechanical treatment of nanocomposites on a capillary viscometer at 230°С and a load of 5 kg, the uniformity of the distribution of exfoliated MMT in the polymer matrix increases, as a result of which the crystalline structure of PA6 changes and its glass transition and melting temperatures increase. These changes in the PA6 structure also have a significant impact on the melt flow index and the softening temperature of nanocomposites.
Twórcy
  • Lukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, M. Skłodowska-Curie 55 St., 87-100 Torun, Poland
  • Faculty of Mechanical Engineering, Department Technologies, Materials and Computer Aided Production, Technical University of Košice, Masiarska 74 St., 04001 Košice, Slovakia
autor
  • Faculty of Mechanical Engineering, Department Technologies, Materials and Computer Aided Production, Technical University of Košice, Masiarska 74 St., 04001 Košice, Slovakia
  • Lukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, M. Skłodowska-Curie 55 St., 87-100 Torun, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Polymer Processing, Nadbystrzycka 36 St., 20-618 Lublin, Poland
Bibliografia
  • 1.Yebra-Rodríguez A., Alvarez-Lloret P., Rodríguez-Na¬varro A. B., Martín-Ramos J. D., Cardell C. Thermo- XRD and differential scanning calorimetry to trace epitaxial crystallization in PA6/montmorillonite nano¬composites. Materials Letters 2009; 63(13-14): 1159- 1161. https://doi.org/10.1016/j.matlet.2009.02.027
  • 2.Krasinskyi V., Suberlyak O., Sikora J., Zemke V. Nanocomposites based on polyamide-6 and mont¬morillonite intercalated with polyvinylpyrrolidone. Polymer-Plastics Technology and Materials 2021; 60(15): 1641–1655. https://doi.org/10.1080/25740 881.2021.1924201
  • 3.Goettler L. A., Lee K. Y., Thakkar H. Layered silicate reinforced polymer nanocomposites: Development and applications. Polymer Reviews 2007; 47(2): 291– 317. https://doi.org/10.1080/15583720701271328
  • 4.Dulebová Ľ., Greškovič F., Sikora J. W., Krasinskyi V. Analysis of the mechanical properties change of PA6/MMT nanocomposite system after ageing. Key Engineering Materials 2017; 756: 52–59. https:// doi.org/10.4028/www.scientific.net/KEM.756.52
  • 5.Lai D., Li Y., Wang C., Liu Y., Li D., Yang J. Inhibi¬tion effect of aminated montmorillonite on crystal¬lization of dendritic polyamide 6. Materials Today Communications 2020; 25: 101578. https://doi. org/10.1016/j.mtcomm.2020.101578
  • 6.Siddique S., Leung P. S., Njuguna J. Drilling oil-based mud waste as a resource for raw materials: A case study on clays reclamation and their applica¬tion as fillers in polyamide 6 composites. Upstream Oil and Gas Technology 2021; 7: 100036. https:// doi.org/10.1016/j.upstre.2021.100036
  • 7.Cheira M. F., Kouraim M. N., Zidan I. H., Mohamed W. S., Hassanein T. F. Adsorption of U(VI) from sul¬fate solution using montmorillonite/polyamide and na¬no-titanium oxide/polyamide nanocomposites. Journal of Environmental Chemical Engineering 2020; 8(5): 104427. https://doi.org/10.1016/j.jece.2020.104427
  • 8.Usuki A., Kojima Y., Kawasumi M., Okada A., Fuku¬shima Y., Kurauchi T., Kamigaito O. Synthesis of nylon 6-clay hybrid. Journal of Materials Research 1993; 8: 1179–1184. https://doi.org/10.1557/JMR.1993.1179
  • 9.Chen H.-B., Schiraldi, D. A. Flammability of poly¬mer/clay aerogel composites: An overview. Polymer Reviews 2018; 59(1): 1–24. https://doi.org/10.1080 /15583724.2018.1450756
  • 10.Jeon H. G., Jung H.-T., Lee S. W., Hudson S. D. Morphology of polymer/silicate nanocomposites. Polymer Bulletin 1998; 41: 107–113. https://doi. org/10.1007/s002890050339
  • 11.Giannelis E. P. Polymer layered silicate nanocom¬posites. Advanced Materials 1996; 8(1): 29–35. https://doi.org/10.1002/adma.19960080104
  • 12.El Achaby M., Ennajih H., Arrakhiz F. Z., El Kadib A., Bouhfid R., Essassi E., Qaiss A. Modification of montmorillonite by novel geminal benzimidazo¬lium surfactant and its use for the preparation of Polymer Organoclay nanocomposites. Composites Part B: Engineering 2013; 51: 310–317. https://doi. org/10.1016/j.compositesb.2013.03.009
  • 13.García-López D., Gobernado-Mitre I., Fernández J. F., Merino J. C., Pastor J. M. Influence of clay modi¬fication process in PA6-layered silicate nanocom¬posite properties. Polymer 2005; 46(8): 2758–2765. https://doi.org/10.1016/j.polymer.2005.01.038
  • 14.Hwang S., Liu S., Hsu P. P., Yeh J., Yang J., Chang K., Chu, S. Effect of organoclay and preparation meth¬ods on the mechanical/thermal properties of micro¬cellular injection molded polyamide 6-clay nano¬composites. International Communications in Heat and Mass Transfer 2011; 38(9): 1219–1225. https:// doi.org/10.1016/j.icheatmasstransfer.2011.06.013
  • 15. Yebra-Rodriguez A., Alvarezl-Lloret P., Cardell C., Ro¬driguez-Navarro A. Crystalline properties of injection molded polyamide-6 and polyamide-6/montmorillon¬ite nanocomposites. Applied Clay Science 2009; 43(1): 91–97. https://doi.org/10.1016/j.clay.2008.07.010
  • 16. Krasinskyi V., Gajdos I., Suberlyak O., Antoniuk V., Jachowicz T. Study of the structure and thermal charac-teristics of nanocomposites based on polyvinyl alcohol and Intercalated Montmorillonite. Journal of Thermo¬plastic Composite Materials 2021; 34(12): 1680–1691. https://doi.org/10.1177/0892705719879199
  • 17.Oulidi O., Nakkabi A., Elaraaj I., Fahim M., Moualij N. E. Incorporation of olive pomace as a natural filler in to the PA6 matrix: Effect on the structure and thermal properties of synthetic polyamide 6. Chemical Engineering Journal Advances 2022; 12: 100399. https://doi.org/10.1016/j.ceja.2022.100399
  • 18.Guo H., Wang J., Zhou C., Zhang W., Wang Z., Xu B., Li J., Shang Y., de Claville Christiansen J., Yu D., Wu Z., Jiang S. Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and saxs. Polymer 2015; 70: 109–117. https://doi. org/10.1016/j.polymer.2015.06.013
  • 19. Follain N., Alexandre B., Chappey C., Colasse L., Médéric P., Marais S. Barrier properties of Polyam¬ide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions. Composites Science and Technology 2016; 136: 18–28. https:// doi.org/10.1016/j.compscitech.2016.09.023
  • 20. Xenopoulos A, Clark E. S. Physical structures. Nylon Plastics Handbook. Hanser Publishers, Munich, 1995.
  • 21. Sun H., Jiang F., Lei F., Chen L., Zhang H., Leng J., Sun D. Graphite fluoride reinforced PA6 compos¬ites: Crystallization and mechanical properties. Ma¬terials Today Communications 2018; 16: 217–225. https://doi.org/10.1016/j.mtcomm.2018.06.007
  • 22. Wei P., Cui S., Bai S. In situ exfoliation of graphite in solid phase for fabrication of graphene/polyam¬ide-6 composites. Composites Science and Technol¬ogy 2017; 153: 151–159. https://doi.org/10.1016/j. compscitech.2017.10.009
  • 23. Xu S., Zhou J., Pan P. Strain-induced multiscale structural evolutions of crystallized polymers: From fundamental studies to recent progresses. Progress in Polymer Science 2023; 140: 101676. https://doi. org/10.1016/j.progpolymsci.2023.101676
  • 24. Uematsu H., Kawasaki T., Koizumi K., Yamaguchi A., Sugihara S., Yamane M., Kawabe K., Ozaki Y., Tanoue S. Relationship between crystalline struc¬ture of polyamide 6 within carbon fibers and their mechanical properties studied using micro-raman spectroscopy. Polymer 2021; 223: 123711. https:// doi.org/10.1016/j.polymer.2021.123711 .
  • 25 Kumar Jain P. A., Sattar S., Mulqueen D., Pedrazzoli D., Kravchenko S. G., Kravchenko O. G. Role of annealing and isostatic compaction on mechanical properties of 3D printed short glass fiber nylon com¬posites. Additive Manufacturing 2022; 51: 102599. https://doi.org/10.1016/j.addma.2022.102599 26 . Miri V., Persyn O., Seguela R., Lefebvre J. M. On the deformation induced order–disorder transitions in the crystalline phase of polyamide 6. European Polymer Journal 2011; 47(1): 88–97. https://doi. org/10.1016/j.eurpolymj.2010.09.006
  • 26 Miri V., Persyn O., Seguela R., Lefebvre J. M. On the deformation induced order–disorder transitions in the crystalline phase of polyamide 6. European Polymer Journal 2011; 47(1): 88–97. https://doi. org/10.1016/j.eurpolymj.2010.09.006
  • 27.Sun L., Yang J.-T., Lin G.-Y., Zhong M.-Q. Crys¬tallization and thermal properties of polyamide 6 composites filled with different nanofillers. Mate¬rials Letters 2007; 61(18): 3963–3966. https://doi. org/10.1016/j.matlet.2006.12.090
  • 28.Lin J.-H., Pan Y.-J., Hsieh C.-T., Huang C.-H., Lin Z.-I., Chen Y.-S., Su K.-H., Lou C.-W. Using multiple melt blending to improve the dispersion of montmorillonite in polyamide 6 nanocompos¬ites. Polymer Testing 2016; 56: 74–82. https://doi. org/10.1016/j.polymertesting.2016.09.016
  • 29.Monticelli O., Musina Z., Frache A., Bellucci F., Camino G., Russo S. Influence of compatibilizer degradation on formation and properties of PA6/ Organoclay Nanocomposites. Polymer Degrada¬tion and Stability 2007; 92(3): 370–378. https://doi. org/10.1016/j.polymdegradstab.2006.12.010
  • 30.Krasinskyi V., Suberlyak O., Dulebová Ľ., Antoniuk V. Nanocomposites on the basis of thermoplastics and montmorillonite modified by polyvinylpyrrolidone. Key Engineering Materials 2017; 756: 3–10. https:// doi.org/10.4028/www.scientific.net/KEM.756.3
  • 31.Wunderlich B. Macromolecular physics, vol. 3, chap. 8: crystal melting. Academic Press, New-York, 1971.
  • 32.Millot C., Fillot L.-A., Lame O., Sotta P., Seguela R. Assessment of polyamide-6 crystallinity by DSC. Jour¬nal of Thermal Analysis and Calorimetry 2015; 122: 307–314. https://doi.org/10.1007/s10973-015-4670-5
  • 33.Levytskyj V., Kochubei V., Gancho A. Influence of the silicate modifier nature on the structure and properties of polycaproamide. Chemistry & Chemi¬cal Technology 2013; 7(2): 169–173. https://doi. org/10.23939/chcht07.02.169
  • 34.Ksouri I., Haddar N. Long term ageing of Polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: Temperature effect. Journal of Polymer Research 2018; 25: 153. https://doi.org/10.1007/s10965-018-1551-1
  • 35.Forster M. J. Glass transition temperature of Nylon 6. Textile Research Journal 1968; 38(5): 474–480. https://doi.org/10.1177/004051756803800504
  • 36.Krasinskyi V., Kochubei V., Klym Y., Suberlyak O. Thermogravimetric research into composites based on the mixtures of polypropylene and modi¬fied polyamide. Eastern-European Journal of Enter¬prise Technologies 2017; 4(12(88): 44–50. https:// doi.org/10.15587/1729-4061.2017.108465
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db5b60e2-4a9e-44d3-906c-b83f59210761
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.