Identyfikatory
Warianty tytułu
Application of meshless methods for pistol bullets modelling
Języki publikacji
Abstrakty
Artykuł przedstawia analizę możliwości zastosowania dwóch metod bezsiatkowych do modelowania pocisków pistoletowych na przykładzie pocisku 9 mm Parabellum. Badania obejmowały metody SPH (Smoothed Particle Hydrodynamics) oraz SPG (Smoothed Particle Galerkin). Wyniki symulacji komputerowych zostały porównane z wynikami testów balistycznych pod względem zgodności kształtowo-wymiarowej zdeformowanego pocisku. Błąd względny średnicy pocisku wynosił 15% i 17% odpowiednio dla metody SPG i SPH. Postać deformacji dla metody SPH odbiegała od wyników testów balistycznych, podczas gdy metoda SPG wiernie odwzorowała kształt zdeformowanego pocisku.
The paper presents an analysis of applicability of two meshless methods for pistol bullets modelling based on an example of a 9 mm Parabellum. The studies included the following methods: smoothed Particle Hydrodynamics (SPH) method and smoothed Particle Galerkin (SPG) method. The results of computer simulations were confronted with ballistic test results in terms of shapedimensional compliance of the deformed projectile. The relative error of the projectile diameter was 15% and 17% for the SPG and SPH methods, respectively. The deformation form for the SPH method deviated from the ballistic test results, while the SPG method faithfully reproduced the shape of the deformed projectile.
Czasopismo
Rocznik
Tom
Strony
89--99
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Wojskowa Akademia Techniczna, Wydział Inżynierii Mechanicznej, Instytut Mechaniki i Inżynierii Obliczeniowej, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
autor
- Wojskowa Akademia Techniczna, Wydział Inżynierii Mechanicznej, Instytut Mechaniki i Inżynierii Obliczeniowej, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
Bibliografia
- 1. Wiśniewski A., Pacek D., Experimental research and numerical analysis of penetration of the twaron T750 aramid fabric with the 9 mm Parabellum projectile, Problemy Mechatroniki, 4, 3, 2013, 7-22.
- 2. Barauskas R., Abraitiene A., Multi-resolution finite element models for simulation of the ballistic impact on non-crimped composite fabric packages, Compos. Struct.,104, 2013, 215-229, https://doi.org/10.1016/j.compstruct, 2013.04.014.
- 3. Zhang G.M., Batra R.C., Zheng J., Effect of frame size, frame type, and clamping pressure on the ballistic performance of soft body armor, Compos Part B Eng., 39, 2008, 476-489, https://doi.org/10.1016/j.compositesb, 2007.04.002.
- 4. Yang C.-C., Ngo T., Tran P., Influences of weaving architectures on the impact resistance of multi-layer fabrics, Mater Des., 85, 2015, 282-295, https://doi.org/10.1016/j.matdes.2015.07.014.
- 5. Pirvu C., Ionescu T.F., Deleanu L., Badea S., Simplified simulation of impact bullet ‒ stratified pack for restraining ballistic tests, MATE C Web Conf., Iași, Romania, 2017, https://doi.org/10.1051/matecconf/201711206023.
- 6. Barauskas R., Abraitienė A., Computational analysis of impact of a bullet against the multilayer fabrics in LS-Dyna, Int. J. Impact Eng., 34, 2007, 1286-1305, https://doi.org/10.1016/j.ijimpeng.2006.06.002.
- 7. Aare M., Kleiven S., Evaluation of head response to ballistic helmet impacts using the finite element method, Int. J. Impact Eng., 34, 2007, 596-608, https://doi.org/10.1016/j.ijimpeng.2005.08.001.
- 8. Li X.G., Gao X.-L., Kleiven S., Behind helmet blunt trauma induced by ballistic impact: A computational model, Int. J. Impact Eng., 91, 2016, 56–67, https://doi.org/10.1016/j.ijimpeng.2015.12.010.
- 9. Palta E., Fang H., Weggel D.C., Finite element analysis of the Advanced Combat Helmet under various ballistic impacts, Int. J. Impact Eng., 112, 2018, 125-143, https://doi.org/10.1016/j.ijimpeng.2017.10.010.
- 10. Wiśniewski A., Pacek D., Walidacja modelu numerycznego pocisku 9 mm Parabellum, Mechanik, 85, 2012, 138-141.
- 11. Maréchal C., Bresson F., Haugou G., Numerical tools for the impact parameters identification of the 9mm Parabellum FMJ bullet, Eng. Trans., 59, 2011, 263-272.
- 12. Bodepati V., Mogulanna K., Rao S., Vemuri M., Numerical Simulation and Experimental Validation of E-Glass/epoxy Composite Material under Ballistic Impact of 9 mm Soft Projectile, Procedia Eng., 173, 2017, 740-746, https://doi.org/10.1016/j.proeng.2016.12.068.
- 13. Hub J., Komenda J., Novák M., Ballistic limit evaluation for impact of pistol projectile 9 mm Luger on aircraft skin metal plate, Adv. Mil. Technol., 7, 1, 2012.
- 14. Wang Y., Shi X., Chen A., Xu C., The experimental and numerical investigation of pistol bullet penetrating soft tissue simulant, Forensic Sci. Int., 249, 2015, 271-279, https://doi.org/10.1016/j.forsciint.2015.02.013.
- 15. Wiśniewski A., Pacek D., Experimental research and numerical analysis of 9 mm Parabellum projectile penetration of ultra-high molecular weight polyethylene layers, Problemy Techniki Uzbrojenia, 42, 127, 2013, 55-64.
- 16. Wiśniewski A., Pacek D., Numerical Simulations of Penetration of 9 mm Parabellum Bullet into Kevlar Layers: Erosion Selection in Autodyn Program, Problemy Mechatroniki, 2, 3, 2011, 11-20.
- 17. Hazell P.J., Edwards M.R., Longstaff H., Erskine J., Penetration of a glass-faced transparent elastomeric resin by a lead–antimony-cored bullet, Int. J. Impact. Eng.,36, 2009, 147- 153, https://doi.org/10.1016/j.ijimpeng.2007.12.009.
- 18. Sháněl V., Španiel M., Ballistic impact experiments and modelling of sandwich armor for numerical simulations, Procedia Eng.,79, 2014, 230-237, https://doi.org/10.1016/j.proeng.2014.06.336.
- 19. Sovják R., Vavřiník T., Zatloukal J., Máca P., Mičunek T., Frydrýn M., Resistance of slim UHPFRC targets to projectile impact using in-service bullets, Int. J. Impact Eng., 2015, 76,166-177, https://doi.org/10.1016/j.ijimpeng.2014.10.002.
- 20. Børvik T., Dey S., Clausen A.H., Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles, Int. J. Impact Eng., 36, 2009, 948-964, https://doi.org/10.1016/j.ijimpeng.2008.12.003.
- 21. Morka A., Kędzierski P., Gieleta R., Selected Aspects of Numerical Analysis of Layered Flexible Structures Subjected to Impact of Soft Core Projectile, Arch. Mech. Eng., 62, 1, 2015, 73-83, https://doi.org/10.1515/meceng-2015-0005.
- 22. Kędzierski P., Morka A., Stanisławek S., Surma Z., Numerical modeling of the large strain problem in the case of mushrooming projectiles, Int. J. Impact. Eng.,135, 2020, 1-14, https://doi.org/10.1016/j.ijimpeng.2019.103403.
- 23. Courant R., Friedrichs K., Lewy H., On the partial difference equations of mathematical physics, IBM J. 1967, 11:215-34.
- 24. Børvik T., Hopperstad O., Berstad T., Langseth M., A computational model of viscoplasticity and ductile damage for impact and penetration, Eur. J. Mech. - A Solids, 20, 5, 2001, 685-712, https://doi.org/10.1016/S0997-7538(01)01157-3.
- 25. Cockroft M.G., Latham D.J., Ductility and the Workability of Metals, J. Inst. Met., 96,1968, 33-39.
- 26. Price D.J., Smoothed particle hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 2012, 759-794, https://doi.org/10.1016/j.jcp.2010.12.011.
- 27. Jankowiak T., Rusinek A., Wood P., A numerical analysis of the dynamic behavior of sheet steel perforated by a conical projectile under ballistic conditions, Finite Elements Anal. Des., 65, 2013, 39-49, http://dx.doi.org/10.1016/j.finel.2012.10.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db575025-181d-437c-9d91-61ffc949b5b4