PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Superhydrophobic MWCNTs/PDMS-nanocomposite materials: Preparation and characterization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The surface morphology, structure and hydrophobicity of low-and high-molecular weight poly(dimethylsiloxane) (PDMS) fluids physically adsorbed onto multi-walled carbon nanotubes (MWCNTs) at different weight percentages (5, 10, 20 and 40 wt.%), were studied employing X-ray diffraction (XRD), attenuated total reflectanceFouriertransforminfrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and measurements of contact angle with water. It was found that MWCNTs agglomerate forming voids between tubes of a broad range, while adsorption of the polymer from a hexane solution results in the expected wrapping of nanotubes withPDMS chains and, further, in filling voids, as represented by SEM data. ATR-FTIR was used to investigate the possible structural changes in the polymer nanocomposites. Based on the contact anglemeasurementsvia water drop shape analysis,MWCNTs/PDMS nanocomposites were characterizedas astable,superhydrophobic materials with the maximum contact angle (CA) equal to 152°at CPDMS=40wt.%.
Rocznik
Strony
1394--1400
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Chuiko Institute of Surface Chemistry of NASU, 17 General Naumov Str., 03164 Kyiv, Ukraine
autor
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering,Berdychowo 4, PL-60965 Poznan, Poland
  • Maria Curie-Sklodowska University, Faculty of Chemistry, M.Curie-Sklodowska Sq.3, PL-20031 Lublin, Poland
  • Maria Curie-Sklodowska University, Faculty of Chemistry, M.Curie-Sklodowska Sq.3, PL-20031 Lublin, Poland
  • Chuiko Institute of Surface Chemistry of NASU, 17 General Naumov Str., 03164 Kyiv, Ukraine
  • Chuiko Institute of Surface Chemistry of NASU, 17 General Naumov Str., 03164 Kyiv, Ukraine
  • Maria Curie-Sklodowska University, Faculty of Chemistry, M.Curie-Sklodowska Sq.3, PL-20031 Lublin, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
Bibliografia
  • AZHARI, S., YOUSEFI, A. T., TANAKA, H., KHAJEHC, A., KUREDEMUS, N., BIGDELI, M. M., HAMIDON, M. N., 2017. Fabrication of piezoresistive based pressure sensor via purified and functionalized CNTs/PDMS nanocomposite: Toward development of haptic sensors. Sens Actuators. A: Physical. 266, 158–165.
  • CHEMISTRY OPERATIONS, 2003. Carbon. Los Alamos National Laboratory. http://periodic.lanl.gov/elements/6.html/ (retrieved 2007-11-21).
  • GUN’KO, V. M., BORYSENKO, M. V., PISSIS, P., SPANOUDAKI, A., SHINYASHIKI, N., SULYM, I. Y., KULIK,T.V., PALYANYTSYA,B. B., 2007. Polydimethylsiloxane at the interfaces of fumed silica and zirconia/fumed silica. Appl. Surf. Sci. 253, 7143-7156.
  • HEMBRAM,K.P.S.S., MOHAN,R.G., 2012. Origin ofstructural defects in multiwall carbon nanotube. Mater Lett. 72, 68–70.
  • IIJIMA,S., 1991. Helical microtubule of graphite carbon. Nature 354, 56–58.
  • JEEVAHAN, J., CHANDRASEKARAN, M., JOSEPH,G. B., DURAIRA, J R.B., MAGESHWARAN,G., 2018. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 15, 231–250.
  • JENKINS, R., SNYDER, R.L., 1996. Introduction to X-ray powder diffractometry.Wiley, New York.
  • KAPRIDAKI, C., MARAVELAKI-KALAITZAKI, P., 2013. TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog. Org. Coat. 76, 400–410.
  • KARTEL, M., SEMENTSOV, YU., MAHNO, S., TRACHEVSKIY, V., BO, W., 2016. Polymer composites filled with multiwall carbon nanotubes. Univ. J. Mater. Sci. 4, 23–31.
  • KHALID,S.I., 2013. Carbon nanotubes–properties and applications: a review. Carbon Lett. 14, 131–144.
  • KLONOS, P., SULYM, I. Y., STERNIK, D., KONSTANTINOU, P., GONCHARUK, O. V., DERYŁO–MARCZEWSKA, A., GUN'KO, V. M., KYRITSIS, A., PISSIS, P., 2018. Morphology, crystallization and rigid amorphous fraction in PDMS adsorbed onto carbon nanotubes and graphite. Polymer 139, 130–144.
  • KONG,K.T.S., MARIATTI, M., RASHID, A. A., BUSFIELD, J.J.C., 2014. Enhanced conductivity behavior of polydimethylsiloxane (PDMS) hybrid composites containing exfoliated graphite nanoplatelets and carbon nanotubes. Composites Part B. 58, 457–462.
  • LI, D., NEUMANN, A. W., 1992. Equation of state for interfacial tensions of solid-liquid systems. Adv. Colloid Interf.Sci. 39, 299–345.
  • MAJI, D., LAHIRI, S. K., DASA, S., 2012. Study of hydrophilicity and stability of chemically modified PDMSsurface using piranha and KOH solution. Surf. Interf. Anal. 44, 62–69.
  • MELEZHYK, A. V., SEMENTSOV,YU. I., YANCHENKO,V. V., 2005. Synthesis of thin carbon nanotubes on co-precipitated metaloxide catalysts. Russ. J. Appl. Chem. 78, 938–946.
  • NISHIO, M., HIROTA, M., UMEZAWA, Y., 1998. The CH/πinteraction: evidence, nature, and consequences. John Wiley & Sons, New York.
  • RAMALINGAME, R., UDHAYAKUMAR, N., TORRES, R., NECKEL, I. T., MÜLLER,C., KANOUN, O., 2016. MWCNT-PDMS nanocomposite based flexible multifunctional sensor for health monitoring. Procedia Eng. 168, 1775–1778.
  • SHETTY,H. D., PATRA, A., PRASAD, V., 2018. Polydimethylsiloxane-multiwalled carbon nanotube composite as a metamaterial.Mater. Lett. 210, 309–313.
  • SHIN,U. S., YOON, I.-K., LEE, G.-S., JANG, W.-C., KNOWLES, J. C., KIM, H.-W., 2011. Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements. J. Tissue Eng. 2011, Article ID 674287,10 pages.
  • SPITALSKY, Z., TASIS, D., PAPAGELIS, K., GALIOTIS, C., 2010. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401.
  • SULYM,I. Y., BORYSENKO,M. V., GONCHARUK,O. V., TERPILOWSKI,K., STERNIK, D., CHIBOWSKI, E., GUN’KO,V. M., 2011. Structural and hydrophobic–hydrophilic properties of nanosilica/zirconia alone and with adsorbed PDMS. Appl. Surf. Sci. 258, 270–277.
  • SULYM, I., GONCHARUK, O., STERNIK, D., TERPILOWSKI, K., DERYLO-MARCZEWSKA, A., BORYSENKO, M. V., GUN’KO, V. M., 2017. Nanooxide/polymer composites with silica@PDMS and ceria–zirconia–silica@PDMS: Textural, morphological, and hydrophilic/hydrophobic features. Nanoscale Res. Lett. 12,152–162.
  • SUN,G., LI,X., QU, Y., WANG,X., YAN, H., ZHANG, Y., 2008. Preparation and characterization of graphite nanosheets from detonation technique. Mater. Lett. 62, 703-70.
  • SUN, X., SUN, H., LI, H., PENG, H., 2013. Developing polymer composite materials: Carbon nanotubes or graphene? Adv. Mater. 25, 5153–5176.
  • ZHANG, B., LI, B., JIANG, S., 2017. Noncovalently functionalized multi-walled carbon nanotube with core-dualshell nanostructure for improved piezoresistive sensitivity of poly(dimethyl siloxane) nanocomposites. Composites Part A. 94, 124–132.
Uwagi
1. Polish Ministry of Science and Higher Education (Grant No. 03/32/SBAD/0906)
2. Visegrad Fund (Contract number 51910525)
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db5700a4-bc8c-4e0a-ace0-6a69ee742d6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.