PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent upgrading of the nanosecond pulse radiolysis setup and construction of laser flash photolysis setup at the Institute of Nuclear Chemistry and Technology in Warsaw, Poland

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modification of pulse radiolysis (PR) setup and construction of a new laser flash photolysis (LFP) setup at the Institute of Nuclear Chemistry and Technology (INCT) is described. Both techniques are dedicated to studying fast reactions in real time by direct observation of transients. Time resolution of the PR setup at INCT was ~11 ns, limited by the duration of the electron pulse. Implementation of a new spectrophotometric detection system resulted in a significant broadening of experimental spectral range with respect to the previous setup. Noticeable reduction of the noise-to-signal ratio was also achieved. The LFP system was built from scratch. Its time resolution was ~6 ns, limited by the duration of a laser pulse. LFP and PR were purposely designed to share the same hardware and software solutions. Therefore, components of the detection systems can be transferred between both setups, signifi cantly lowering the costs and shortening the construction/upgrading time. Opened architecture and improved experimental fl exibility of both techniques were accomplished by implementation of Ethernet transmission control protocol/Internet protocol (TCP/IP) communication core and newly designed software. This is one of the most important enhancements. As a result, new experimental modes are available for both techniques, improving the quality and reducing the time of data collections. In addition, both systems are characterized by relatively high redundancy. Currently, implementation of new equipment into the systems hardly ever requires programming. In contrast to the previous setup, daily adaptations of hardware to experimental requirements are possible and relatively easy to perform.
Czasopismo
Rocznik
Strony
49--64
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warszawa, Poland
Bibliografia
  • 1. Norrish, R. G. W., & Porter, G. (1949). Chemical reactions produced by very high light intensities. Nature, 164(4172), 658–658. DOI: 10.1038/1 64658a0.
  • 2. Porter, G. (1950). Flash photolysis and spectroscopy a new method for the study of free radical reactions. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 200(1061), 284–300. DOI: 10.1098/rspa.19 50.0018.
  • 3. Hague, D. N. (1969). Experimental methods for the study of fast reactions. In C. H. Bamford & C. F. H. Tipper (Eds.), Comprehensive chemical kinetics (Vol. 1, pp. 112–179). E lsevier.
  • 4. Hart, E. J., & Boag, J. W. (1962). Absorption spectrum of hydrated electron in water and in aqueous solutions. J. Am. Chem. Soc., 84(21), 4090–4095. DOI: 10.1021/Ja00 880a025.
  • 5. Boag, J. W., & Hart, E. J. (1963). Absorption spectra in irradiated water and some solutions – absorption spectra of hydrated electron. Nature, 197(486), 45–47. DOI: 10.1038/1 97045a0.
  • 6. Matheson, M. S., & Dorfman, L. M. (1960). Detection of short-lived transients in radiation chemistry. J. Chem. Phys., 32(6), 1870–1871. DOI: 10.1063/1. 1731035.
  • 7. Keene, J. P. (1960). Kinetics of radiation-induced chemical reactions. Nature, 188(4753), 843–844. DOI: 10.1038/1 88843b0.
  • 8. Mccarthy, R. L., & Maclachlan, A. (1960). Transient benzyl radical reactions produced by high-energy radiation. Trans. Faraday Soc., 56(8), 1187–1200. DOI: 10.1039/Tf960 5601187.
  • 9. Novak, J. R., & Windsor, M. W. (1968). Laser photolysis and spectroscopy – a new technique for study of rapid reactions in nanosecond time range. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 308(1492), 95–110. DOI: 10.1098/rspa.19 68.0210.
  • 10. Scaiano, J. C. (1983). Early history of laser fl ashphotolysis. Accounts Chem. Res., 16(7), 234. DOI: 10.1021/Ar00 091a601.
  • 11. Hentschel, M., Kienberger, R., Spielmann, C., Reider, G. A., Milosevic, N., Brabec, T., Corkum, P., Heinzmann, U., Drescher, M., & Krausz, F. (2001). Attosecond metrology. Nature, 414(6863), 509–513.DOI: 10.1038/3 5107000.
  • 12. Wishart, J. F., & Nocera, D. G. (1998). Photochemistry and radiation chemistry, complementary methods for the study of electron transfer. Washington, D C: American Chemical Society.
  • 13. Bobrowski, K. (2005). Free radicals in chemistry, biology and medicine: contribution of radiation chemistry. Nukleonika, 50(Suppl. 3), S67–S76.
  • 14. Karolczak, S. (1999). Pulse radiolysis – experimental features. In J. Mayer (Ed.), Properties and reactions of adiation induced transients (pp. 11–37). Warszawa: Polish Scientific Publishers PWN.
  • 15. Belloni, J., Crowell, R. A., Katsumura, Y., Lin, M., Marignier, J. -L., Mostafavi, M., Muroya, Y., Saeki, A., Tagawa, S., Yoshida, Y., De Waele, V., & Wishart, J. F. (2010). Ultrafast pulse radiolysis methods. In J. F. Wishart & B. S. M. Rao (Eds.), Recent trends in radiation chemistry (pp. 121–160). World Scientific.
  • 16. Baxendale, J. H., & Busi, F. (1982). The study of fast processes and transient species by electron pulse radiolysis. (Nato Science Series C: Mathematical and Physical Sciences, Vol. 86). Dordrecht: Springer.
  • 17. Kadlubowski, S., Sawicki, P., Sowinski, S., Rokita, B., Bures, K. D., Rosiak, J. M., & Ulanski, P. (2018). Novel system for pulse radiolysis with multi-angle light scattering detection (PR-MALLS) – concept, construction and first tests. Radiat. Phys. Chem., 142, 9–13. https://doi.org/10.1016/j.radphyschem.2017 .04.010.
  • 18. Zimek, Z. (1990). A new electron linac for puls radiolysis experiments at the Institute of Nuclear Chemistry and Technology, Poland. Radiat. Phys. Chem., 36(2) , 81–83. (2001).
  • 19. Mirkowski, J., Wiśniowski, P., & Bobrowski, K., A nanosecond pulse radiolysis system dedicated to the new LAE 10 accelerator in the INCT. In Annual Report 2000 (pp. 31–33). Warsaw: Institute of Nuclear Chemistry and Tec hnology.
  • 20. Szreder, T., Schmidt, H., & Modolo, G. (2019). Fast radiation-induced reactions in organic phase of SANEX system containing CyMe4-BTPhen extracting agent. Radiat. Phys. Chem., 164, 108356. DOI: 10.1016/j.radphyschem.2019 .108356.
  • 21. Marchini, M., Baroncini, M., Bergamini, G., Ceroni, P., D’Angelantonio, M., Franchi, P., Lucarini, M., Negri, F., Szreder, T., & Venturi, M. (2017). Hierarchical growth of supramolecular structures driven by pimerization of tetrahedrally arranged bipyridinium units. Chem.-Eur. J., 23(26), 6380–6390. DOI: 10.1002/chem.20 1700137.
  • 22. Kocia, R. (2019). Pulse radiolysis studies of intermediates derived from p-terphenyl in the oxygenated methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide ionic liquid. Int. J. Chem. Kinet., 51(12), 958–964. DOI: 10.1002/ki n.21323.
  • 23. Szreder, T., Kisala, J., Bojanowska-Czajka, A., Kasperkowiak, M., Pogocki, D., Bobrowski, K., & Trojanowicz, M. (2022). High energy radiation – induced cooperative reductive/oxidative mechanism of perfluorooctanoate anion (PFOA) decomposition in aqueous solution. Chemosphere, 295, 133920. DOI: 10.1016/j.chemosphere.2022 .133920.
  • 24. Zimek, Z. (2019). The INCT electron accelerator research facilities. In A. G. Chmielewski & Z. Zimek (Eds.), Electron accelerators for research, industry and environment – the INCT perspective (pp. 7–30). Warsa w: Oficyna Wydawnicza Politechniki Warszawskiej.
  • 25. Beck, G. (1976). Operation of a 1P28 photomultiplier with subnanosecond response time. Rev. Sci. Instrum., 47(5), 537–541. DOI: 10.1063/1. 1134685.
  • 26. Chatgilialoglu, C., Krokidis, M. G., Masi, A., BarataVallejo, S., Ferreri, C., Terzidis, M. A., Szreder, T., & Bobrowski, K. (2019). New insights into the reaction paths of hydroxyl radicals with purine moieties in DNA and double-stranded oligodeoxynucleotides. Molecules, 24(21), 3860. DOI: 10.3390/molecules2 4213860.
  • 27. Janata, E. (1982). Pulse-radiolysis conductivity measurements in aqueous-solutions with nanosecond time resolution. Radiat. Phys. Chem., 19(1), 17–21. DOI: 10.1016/0146-5724(82)90043-7..
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db4ede3d-c0e5-47c8-bf81-880eecc97fef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.