PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Burial and thermal history of the Upper Silesian Coal Basin (Poland) constrained by maturity modelling : implications for coalification and natural gas generation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Maturity modelling was carried out using basin and petroleum system modelling (BPSM) software in the lithologic sections of 17 wells of the Upper Silesian Coal Basin (Poland). The best fit between calculated and measured vitrinite reflectance (VR), porosity and density data was obtained by applying a thickness of eroded sedimentary overburden from 1700 m in the east to 4500 m in the west and relatively low to moderate heat flow values during the maximum late Carboniferous burial. These heat flow values were in the range 50-71 mW/m2
Rocznik
Strony
99--123
Opis fizyczny
Bibliogr. 144 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science & Technology, Faculty of Geology, Geophysics & Environmental Protection, al. Mickiewicza 30, Kraków 30-059, Poland
Bibliografia
  • 1. Adamczyk, Z., Kokowska-Pawłowska, M., Komorek, J., Klupa, A., Lewandowska, M. & Nowak, J., 2018. The impact of a Neogene basalt intrusion on the optical properties and internal structure of the dispersed organic matter in Carboniferous strata (SW-part USCB). Acta Geologica Polonica, 68: 249-262.
  • 2. Adamczyk, Z., Krzeszowska, E. & Porszke, A., 2010. Thermal maturity of organic matter within Carboniferous clastic rocks in the Drogomyśl IG-1 borehole (the Upper Silesian Coal Basin, Poland). Geoscience Engineering, 56: 57-66.
  • 3. Adamczyk, Z. & Porszke, A., 2002. The role of diagenetic variability of Carboniferous from the Drogomyśl IG-1 borehole in the evaluation of its gas-bearing potential. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 18: 67-82.
  • 4. Allen, P. A. & Allen J. R., 2005. Basin Analysis: Principles and Applications. Blackwell Publishing, Oxford, UK, 549 pp.
  • 5. Bábek, O., Tomek, C., Melichar, R., Kalvoda, J. & Otava, J., 2006. Structure of unmetamorphosed Variscan tectonic units of the southern Moravo-Silesian Massif: a review. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 239: 37-75.
  • 6. Bełka, Z., 1993. Thermal and burial history of the Cracow-Silesia region (southern Poland) assessed by conodont CAI analysis. Tectonophysics, 227: 161-190.
  • 7. Botor, D., 2003. Ewolucja paleotermiczna utworów górnokarbońskich Górnośląskiego Zagłębia Węglowego w świetle datowań radiometrycznych apatytów - wstępne wyniki badań. Sprawozdania z Posiedzeń Komisji Naukowych PAN w Krakowie, 47(2): 1-4. [In Polish.]
  • 8. Botor, D., 2014. Timing of coalification of the Upper Carboniferous sediments in the Upper Silesia Coal Basin (SW Poland) on the basis of apatite fission-track and helium dating. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 30: 85-104. [In Polish, with English abstract.]
  • 9. Botor, D. & Bábek, O., 2019. Burial and thermal history modelling of the Upper Carboniferous strata in the south-western part of Upper Silesian Coal Basin based on new vitrinite reflectance data from Bzie-Dębina-60 borehole (southern Poland). Geologické vyzkumy na Morave a ve Slezsku, 26: 65-71.
  • 10. Botor, D., Dunkl, I., Anczkiewicz, A. & Mazur, S., 2017b. Post-Variscan thermal history of the Moravo-Silesian lower Carboniferous Culm Basin (NE Czech Republic - SW Poland). Tectonophysics, 712-713: 643-662.
  • 11. Botor, D., Papiernik, B., Maćkowski, T., Reicher, B., Kosakowski, P., Machowski, G. & Górecki, W., 2013. Gas generation in the Carboniferous source rocks of the Variscan and their foreland: implications for a charge history of natural gases of the Rotliegend deposits (Poland). Annales Societatis Geologorum Poloniae, 83: 353-383.
  • 12. Botor, D., Toboła, T. & Jelonek, I., 2017a. Thermal history of the Lower Carboniferous Culm Basin in the Nízky Jeseník Mts. (NE Bohemian Massif, Czech Republic and Poland). Annales Societatis Geologorum Poloniae 87: 13-40.
  • 13. Braun, R. L. & Burnham, A. K., 1990. Mathematical model of oil generation, degradation expulsion. Energy and Fuels, 4: 132-146.
  • 14. Buła, Z., Habryn, R., Jachowicz-Zdanowska, M. & Żaba, J., 2015. The Pre-Cambrian and Lower Paleozoic of the Brunovistulicum (eastern part of the Upper Silesian Block, southern Poland) - the state of the art. Geological Quarterly, 59: 123-134.
  • 15. Buła, Z., Jachowicz, M. & Żaba, J., 1997. Principal characteristics of the Upper Silesia Block and Małopolska Block border zone (southern Poland). Geological Magazine, 134: 669-677.
  • 16. Buła, Z. & Żaba, J., 2005. Tectonic position of the Upper Silesian Coal Basin. In: Jureczka, J., Buła, Z. & Żaba, J. (eds), Geology and Environmental Protection in the Upper Silesia Region. Państwowy Instytut Geologiczny & Polskie Towarzystwo Geologiczne, Warszawa, Poland, pp. 14-42. [In Polish.]
  • 17. Buła, Z., Żaba, J. & Habryn, R., 2008. Tectonic subdivision of Poland: southern Poland (Upper Silesian Block and Małopolska Block). Przegląd Geologiczny, 56: 912-920. [In Polish, with English abstract.]
  • 18. Burnham, A. K., Braun, R. L. & Samoun, A. M., 1987. Comparison of methods for measuring kerogen pyrolysis rates fitting kinetic parameters. Energy and Fuels, 1: 452-458.
  • 19. Carr, A. D. & Uguna, C. N., 2015. Some thoughts on the influence of pressure and thermal history assumptions on petroleum systems modeling. Journal of Petroleum Geology, 38: 459-465.
  • 20. Ceriani, A., Di Giullio, A., Fantoni, R. & Scotti, P., 2006. Cooling in rifting sequences during increasing burial depth due to heat flow decrease. Terra Nova, 18: 365-371.
  • 21. Chmura, K., 1970. Physico-thermal Properties of Rocks in Some coal Districts of Poland. Publishing House Śląsk, Katowice, Poland, 198 pp. [In Polish, with English abstract.]
  • 22. Chopin, F., Schulmann, K., Skrzypek, E., Lehmann, J., Dujardin, J. R., Martelat, J. E., Lexa, O., Corsini, M., Edel, J. B., Stípská, P. & Pitra, P., 2012. Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: building a Moldanubian mantled gneiss dome with underthrust Saxothuringian material (European Variscan belt). Tectonics, 31. doi: 10.1029/2011TC002951.
  • 23. Cluff, R. M. & Byrnes, A. P., 2010. Relative permeability in tight gas sandstone reservoirs - the “permeability jail” model. In: SPWLA 51st Annual Logging Symposium, June 19-23, 2010, Perth, Australia. Society of Petrophysicists and Well-Log Analysts, Perth, pp. 1-17.
  • 24. Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J. X., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36: 199-204.
  • 25. Cornford, C., 1998. Source rocks and hydrocarbons of the North Sea. In: Glennie K. W. (ed.), Petroleum Geology of the North Sea (4th eds). Blackwell Science Ltd., London, pp. 376-462.
  • 26. Dadlez, R., Narkiewicz, M., Stephenson, R. A., Visser, M. T. M. & van Vees, J. D., 1995. Tectonic evolution of the Mid-Polish Trough: modeling implications and significance for Central European geology. Tectonophysics, 252: 179-195.
  • 27. Dembowski, Z., 1972. Ogólne dane o Górnośląskim Zagłębiu Węglowym. Prace Instytutu Geologicznego, 61: 9-22. [In Polish.]
  • 28. Dreger, M., 2019. Methane emissions in selected hard-coal mines of the Upper Silesian Coal Basin in 1997-2016. Geology, Geophysics & Environment, 45: 121-132.
  • 29. Dvorak, J., 1989. Anchimetamorphism in the Variscan tectogene in Central Europe - its relationship to tectogenesis. Vestník Ústredmho Ústavu Geologického, 64: 17-30. [In Czech, with English abstract].
  • 30. Filipiak, P., Jurczak-Drabek, A., Karwasiecka, M. & Krieger, W., 2002. Organic matter in the clastic and coal-bearing Carboniferous deposits of Jachówka-2K, Sułkowice-1, Wysoka-3 and Zawoja-1 boreholes. Przegląd Geologiczny, 50: 752-761.
  • 31. Finger, F., Hanzl, P., Pin, C., Von Quadt, A. & Steyrer, H. P., 2000. The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? In: Franke, W., Haak, V., Oncken, O. & Tanner, D. (eds), Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society London Special Publication, 179: 103-112.
  • 32. Francù, E., Francù, J., Kalvoda, J., Poelchau, H. S. & Otava, J., 2002. Burial and uplift history of the Palaeozoic Flysch in the Variscan foreland basin (SE Bohemian Massif, Czech Republic). EGU Stephan Mueller Special Publication Series, 1: 167-179.
  • 33. Gabzdyl, W. & Probierz, K., 1987. The occurrence of anthracites in the area characterized by low-rank coals in the Upper Silesia Coal Basin. International Journal of Coal Geology, 7: 209-225.
  • 34. Gerslová, E., Goldbach, M., Gersl, M. & Skupien, P., 2016. Heat flow evolution, subsidence and erosion in Upper Silesian Coal Basin, Czech Republic. International Journal of Coal Geology, 154-155: 30-42.
  • 35. Hanish, J., 1984. The Mesozoic opening of the North-East Atlantic. Tectonophysics, 101: 1-23.
  • 36. Hantschel, T. & Kauerauf, A., 2009. Fundamentals of Basin and Petroleum Systems Modeling. Springer, Heidelberg, 436 pp.
  • 37. Harańczyk, C., 1979. Metallogenic evolution of the Silesia-Cracow region. Prace Państwowego Instytutu Geologicznego 95: 1-87.
  • 38. Heckel, P. H. & Clayton, G., 2006. The Carboniferous System. Use of the new official names for the subsystems, series, and stages. Geologica Acta, 4: 403-407.
  • 39. Heijlen, W., Muchez, P., Banks, D. A., Schneider, J., Kucha, H. & Keppens, E., 2003. Carbonate-hosted Zn-Pb deposits in Upper Silesia, Poland: Origin and evolution of mineralizing fluids and constraints on genetic models. Economic Geology, 98: 911-932.
  • 40. Hemza, P., Sivek, M. & Jirásek, P., 2009. Factors influencing the methane content of coal beds of the Czech part of the Upper Silesian Coal Basin, Czech Republic. International Journal of Coal Geology, 79: 29-39.
  • 41. Hower, J. C. & Gayer, R. A., 2002. Mechanisms of coal metamorphism: case studies from Paleozoic coalfields. International Journal of Coal Geology, 50: 215- 245.
  • 42. Janousek, V., Aichler, J., Hanzl, P., Gerdes, A., Erban, V, Zácek, V, Pecina, V, Pudilová, M., Hrdlicková, K., Mixa, P. & Zácková, E., 2014. Constraining genesis and geotectonic setting of metavolcanic complexes: a multidisciplinary study of the Devonian Vrbno Group (Hruby Jeseník Mts., Czech Republic). International Journal of Earth Sciences (Geologische Rundschau), 103: 455-483.
  • 43. Jirásek, J., Oplustil, S., Sivek, M., Schmitz, M. D. & Abels, H. A., 2018. Astronomical forcing of Carboniferous paralic sedimentary cycles in the Upper Silesian Basin, Czech Republic (Serpukhovian, latest Mississippian): New radiometric ages afford an astronomical age model for European biozonations and substages. Earth-Science Reviews, 177: 715-741.
  • 44. Jura, D., 2002. Coalification of organic matter related to fluid migration, deeply situated fractures and tectonic junction in the Upper Silesia Coal Basin. Documenta Geonica, 202: 95-104.
  • 45. Jurczak-Drabek, A., 1996. Atlas petrograficzny jakości węgla Górnośląskiego Zagłębia Węglowego, 1:300 000. Państwowy Instytut Geologiczny, Warszawa. [In Polish.]
  • 46. Jurczak-Drabek, A., 2000. Development of organic facies in the Carboniferous section of the Upper Silesia Coal Basin. Biuletyn Państwowego Instytutu Geologicznego, 390: 5-34. [In Polish, with English abstract.]
  • 47. Jureczka, J., Dopita, M., Gałka, M., Krieger, W., Kwarciński, J. & Martinec P., 2005. Geological Atlas of Coal Deposits of the Polish and Czech Parts of the Upper Silesian Coal Basin. Polish Geological Institute, Ministry of Environment, Warszawa.
  • 48. Jureczka, J. & Kotas, A., 1995. Upper Silesia Coal Basin. In: Zdanowski, A. & Żakowa, H. (eds), The Carboniferous System in Poland. Prace Państwowego Instytutu Geologicznego, 148: 164-173.
  • 49. Kalvoda, J., Bábek, O., Fatka, O., Leichmann, J., Melichar, R., Nehyba, S. & Spacek, P., 2008. Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. International Journal of Earth Sciences, 97: 497-518.
  • 50. Karacan, C. Ö. & Olea, R. A., 2014. Inference of strata separation and gas emission paths in longwall overburden using continuous wavelet transform of well logs and geostatistical simulation. Journal of Applied Geophysics, 105: 147-158.
  • 51. Karwasiecka, M., 1996. Geothermal Atlas of the Upper Silesia Coal Basin. Instytut Geologiczny, Warszawa. [In Polish, with English abstract.]
  • 52. Karwasiecka, M., 2001a. Nowe wyniki badań gęstości powierzchniowego strumienia cieplnego Ziemi w obszarze Górnośląskiego Zagłębia Węglowego. In: Plewa, S. (ed.), Rozpoznanie pola cieplnego Ziemi w obszarze Górnośląskiego Zagłębia Węglowego dla potrzeb górnictwa i ciepłownictwa. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Kraków, 90: 50-84. [In Polish.]
  • 53. Karwasiecka, M., 2001b. Wyniki badań dojrzałości termicznej materii organicznej w Górnośląskim Zagłębiu Węglowym. In: Plewa, S. (ed.), Rozpoznanie pola cieplnego Ziemi w obszarze Górnośląskiego Zagłębia Węglowego dla potrzeb górnictwa i ciepłownictwa. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Kraków, 90: 85-102. [In Polish.]
  • 54. Kędzior, A., Gradziński, R., Doktor, M. & Gmur, D., 2007. Sedimentary history of a Mississippian to Pennsylvanian coal-bearing succession: an example from the Upper Silesia Coal Basin, Poland. Geological Magazine, 144: 487-496.
  • 55. Kędzior, S., 2009. Accumulation of coalbed methane in the southwest part of the Upper Silesian Coal Basin (southern Poland). International Journal of Coal Geology, 80: 20-34.
  • 56. Kędzior, S., 2011. The occurrence of a secondary zone of coalbed methane in the southern part of the Upper Silesian Coal Basin (southern Poland): potential for methane exploitation. International Journal of Coal Geology, 86: 157-168.
  • 57. Kędzior, S., 2015. Methane contents and coal-rank variability in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology, 139: 152-164.
  • 58. Kędzior, S., 2019. Distribution of methane contents and coal rank in the profiles of deep boreholes in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology, 202: 190-208.
  • 59. Kędzior, S. & Dreger, M., 2019. Methane occurrence, emissions and hazards in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology, 211: No 103226. Doi.10.1016/j.coal.2019.103226.
  • 60. Kędzior, S., Kotarba, M. J. & Pękała, Z., 2013. Geology, the spatial distribution of methane content and origin of coalbed gases in Upper Carboniferous (Upper Mississippian and Pennsylvanian) strata in the south-eastern part of the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology, 105: 24-35.
  • 61. Kleczkowski, A. S. & Witczak, S., 1967. Permeability and porosity of Carboniferous sandstones as related to depth (Upper Silesian Basin). Bulletin de l'Académie Polonaise des Sciences. Série de Sciences Géologiques et Géographique, 15: 23-31.
  • 62. Kołcoń, I. & Wagner, M., 1983. Brown coal within ore-bearing dolomites of the Zn-Pb deposit in the “Pomorzany” mining area near Olkusz. Kwartalnik Geologiczny, 27: 739-754. [In Polish, with English summary.]
  • 63. Komorek, J., 1996. Coal optical anisotropy in coal-seams 31-42 type of the Upper Silesia Coal Basin. Prace Geologiczne PAN, 140: 1-71. [In Polish, with English abstract.]
  • 64. Komorek, J., Lewandowska, M. & Probierz, K., 2010. Peculiarities of the petrographic composition of coking coals in southwest part Upper Silesian Coal Basin (Poland) as a result of thermal metamorphism influence. Archives of Mining Science, 55: 783-798.
  • 65. Kotarba, M. J., 2001. Composition and origin of gases in the Upper Silesian and Lublin Coal Basins, Poland. Organic Geochemistry, 32: 163-180.
  • 66. Kotarba, M. J., Clayton, J. L., Rice, D. D. & Wagner, M., 2002. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales. Chemical Geology, 184: 11-35.
  • 67. Kotarba, M. J., Kosakowski, P. & Burzewski, W., 2004. Hydrocarbon generation and expulsion processes based on one-dimensional modeling and generation potential of Carboniferous strata in the southern part of the Upper Silesian and Małopolska blocks under Carpathians overthrust. In: Kotarba, M. J. (ed.), Hydrocarbon Generation Potential of Carboniferous Rocks in the Southern Part of the Upper Silesian and Małopolska Blocks, TBPŚ “Geosfera”, Kraków, pp. 87-116. [In Polish, with English summary.]
  • 68. Kotarba, M. J. & Lewan, M. D., 2004. Characterizing thermogenic coalbed gases from Polish coals of different ranks by hydrous pyrolysis. Organic Geochemistry, 35: 615-646.
  • 69. Kotarba, M. J. & Pluta, I., 2009. Origin of natural waters and gases within the Upper Carboniferous coal-bearing and autochthonous Miocene strata in the south-western part of the Upper Silesian Coal Basin, Poland. Applied Geochemistry, 24: 876-889.
  • 70. Kotas, A. (ed.), 1994. Coal-bed methane potential of the Upper Silesian Coal Basin, Poland. Prace Państwowego Instytutu Geologicznego, 142: 1-81.
  • 71. Kotas, A., 1995. Upper Silesian Coal Basin: Lithostratigraphy, sedimentology, and paleogeographic development. In: Zdanowski, A. & Żakowa, H. (eds), The Carboniferous System in Poland. Prace Państwowego Instytutu Geologicznego, 148: 124-135.
  • 72. Kotas, A., 2001. Interpretation problems of thermal maturity gradients of Carboniferous formations of the USCB. In: Lipiarski, I. (ed.), Proceedings of the 24-th Symposium: Geology of Coalbearing Formations of Poland. Kraków, 25-26.04.2001. Wydawnictwa AGH, pp. 45-51. [In Polish, with English abstract.]
  • 73. Kotas, A. & Adamczyk, Z., 2004. Comparative analysis of vitrinite reflectance from Drogomyśl IG-1 borehole in Upper Silesia Coal Basin. In: Lipiarski, I. (ed.), Proceedings of the 27-th Symposium: Geology of Coal-bearing Formations of Poland. Krakow, 21-22.04.2004. Wydawnictwa AGH, Kraków, pp. 63-70. [In Polish, with English abstract.]
  • 74. Kotas, A., Gądek, S., Buła, Z., Kwarciński, J. & Malicki, J., 1983. Atlas geologiczny górnośląskiego zagłębia węglowego, część: 2: mapy jakości węgla, 1:100 000. Państwowy Instytut Geologiczny, Warszawa. [In Polish.]
  • 75. Kozłowski, A., 1995. Origin of the Zn-Pb ores in the Olkusz and Chrzanów districts: a model based on fluid inclusions. Acta Geologica Polonica, 45: 84-141.
  • 76. Law, B. E., 2002. Basin-centered gas systems. AAPG Bulletin, 86: 1891-1919.
  • 77. Law, B. E., Nuccio, V. F. & Barker, C. E., 1989. Kinky vitrinite reflectance profiles: evidence of paleopore pressure in low-permeability, gas-bearing sequences in Rocky Mountain Foreland Basins. AAPG Bulletin, 73: 999-1010.
  • 78. Law, B. E. & Spencer, C. W., 1993. Gas in tight reservoirs an emerging major source of energy. In: David, G. & Howell, D. (eds), The future of energy gasses. US Geological Survey Professional Paper, 1570: 233-252.
  • 79. Littke, R., Büker, C., Hertle, M., Karg, H., Stroetmann-Heinen, V. & Oncken, O., 2000. Heat flow evolution, subsidence and erosion in the Rheno-Hercynian orogenic wedge of central Europe. In: Franke, W., Haak, V., Oncken, O. & Tanner, D. (eds), Orogenic processes: Quantification and modeling in the Variscan belt. Geological Society Special Publications, London, 17: 231-255.
  • 80. Littke, R., Büker, C., Lückge, A., Sachsenhofer, R. F. & Welte, D. H., 1994. A new evaluation of palaeo-heat flows and eroded thicknesses for the Carboniferous Ruhr basin, western Germany. International Journal of Coal Geology, 26: 155-183.
  • 81. Majorowicz, J. A., 1978. Relations between the geothermal field and coalification in Polish coal basins. Geological Quarterly, 22: 497-510. [In Polish, with English abstract.]
  • 82. Majorowicz, J. A. & Jessop, A. M., 1993. Relation between basement heat flow and thermal state of the sedimentary succession of the Alberta Plains. Bulletin of Canadian Petroleum Geology, 41: 358-368.
  • 83. Marcinowski, R., 1989. A biostratigraphic approach to the mid-Cretaceous transgressive sequence in the Central Polish Uplands. Cretaceous Research, 19: 153-172.
  • 84. Martinec, P., Jirásek J., Kozusníková, A. & Sivek, M. (eds), 2005. Atlas of Coal - the Czech Part of the Upper Silesian Basin. Anagram Press, Ostrava. [In Czech, with English abstract.]
  • 85. Martinec, P. & Schejbalova, B., 2004. History and environmental impact of mining in the Ostrava-Karvina coal field (Upper Silesian Coal Basin, Czech Republic). Geologica Belgica, 7: 215-223.
  • 86. Marynowski, L. & Wyszomirski, P., 2008. Organic geochemical evidence of early-diagenetic oxidation of the terrestrial organic matter during the Triassic arid and semi-arid climatic conditions. Applied Geochemistry, 23: 2612-2618.
  • 87. Marynowski, L., Zatoń, M., Simoneit, B. R. T., Otto, A., Jędrysek, M. O., Grelowski, C. & Kurkiewicz S., 2007. Compositions, sources and depositional environments of organic matter from the Middle Jurassic clays of Poland. Applied Geochemistry, 22: 2456-2485.
  • 88. Mazurek, M., Hurford, A. J. & Leu, W., 2006. Unravelling the multistage burial history of the Swiss Molasse Basin: integration of apatite fission-track, vitrinite reflectance, and biomarker isomerization analysis. Basin Research, 18: 27-50.
  • 89. Mählmann, R. F. & Le Bayon, R., 2016. Vitrinite and vitrinite like solid bitumen reflectance in thermal maturity studies: Correlations from diagenesis to incipient metamorphism in different geodynamic settings. International Journal of Coal Geology, 157: 52-73.
  • 90. Mikulski, S. Z., Williams, I. S. & Markowiak, M., 2019. Carboniferous-Permian magmatism and Mo-Cu (W) mineralization in the contact zone between the Małopolska and Upper Silesia blocks (south Poland): an echo of the Baltica Gondwana collision. International Journal of Earth Sciences 108: 1467-1492.
  • 91. Moore, T. A., 2012. Coalbed methane: a review. International Journal of Coal Geology, 101: 36-81.
  • 92. Mukhopadhyay, P. K., 1992. Maturation of organic matter as revealed by microscopic methods: Applications and limitations of vitrinite reflectance, and continuous spectral and pulsed laser fluorescence spectroscopy. Developments in Sedimentology, 47: 435-510.
  • 93. Morga, R., 2000. Coal optical anisotropy in tectonically influenced coal-seams of the Upper Silesia Coal Basin. Prace Geologiczne PAN, 148: 1-86. [In Polish, with English abstract.]
  • 94. Narkiewicz, M., 2007. Development and inversion of Devonian and Carboniferous basins in the eastern part of the Variscan foreland (Poland). Geological Quarterly, 51: 231-256.
  • 95. Ney, R. & Kotarba M. J., 1995. Opracowanie modeli oraz bilansu generowania i akumulacji gazów w serii węglonośnej Górnośląskiego Zagłębia Węglowego. Wydawnictwo PPGSMiE PAN, Kraków, 180 pp. [In Polish.]
  • 96. Nowak, G. J., 1999. Thermal maturity of organic matter in the Miocene sediments of the Carpathian Foredeep as revealed by optical methods. In: Peryt, T. (ed.), Analysis of the Tertiary Basin in the Carpathian Foredeep. Prace Państwowego Instytutu Geologicznego, 168: 211-220.
  • 97. Oberc, J., 1993. Deep seated-fault zones and influence strip-slip fracture (Hamburg-Kraków) on development of the major folding zone in Moravo-Silesia Mobile belt. Kwartalnik Geologiczny, 37: 16-19. [In Polish, with English abstract.]
  • 98. Pesek, J. & Sykorová, I., 2006. A review of the timing of coalification in the light of coal seam erosion, clastic dykes and coal clasts. International Journal of Coal Geology, 66: 13-34.
  • 99. PGI, 2020. Polish Geological Institute - National Research Institute, Warsaw, Poland. http://geoportal.pgi.gov.pl/surowce/energetyczne/mpw/2018 [04.06.2020].
  • 100. Poprawa, P., 2018. Basin Centered Gas System - application as an exploration concept in the Carboniferous Upper Silesian Basin. Nafta-Gaz, 74: 871-883. [In Polish, with English abstract.]
  • 101. Poprawa, P., Buła, Z. & Jurczak-Drabek, A., 2006. Thermal history of the NE Moravo-Silesia basin (Upper Silesia Zone) - preliminary results of maturity modeling. In: Lipiarski, I. (ed.), Proceedings of 29-th Symposium. Geology of coal-bearing formations of Poland. Krakow 19-20.04.2006, Wydawnictwa AGH, Kraków, pp. 105-115. [In Polish, with English abstract.]
  • 102. Poprawa, P. & Kiersnowski, H., 2010. Tight gas reservoirs in Poland. Biuletyn Państwowego Instytutu Geologicznego, 439: 173-180.
  • 103. Probierz, K., 1989. Influence of thermal metamorphism in coal rank and petrographic content of coal seams in Jastrzębie area (USCB). Zeszyły Naukowe Politechniki Śląskiej - Seria Górnictwo, 176: 1-125. [In Polish, with English abstract.]
  • 104. Probierz, K. & Lewandowska, M., 2004. Paleotemperatures of Upper Carboniferous sedimentary rocks in the NW part of the Upper Silesian Coal Basin, Poland. Geologica Belgica, 7: 313-318.
  • 105. Pozzi, M., 1996. Coal optical anisotropy in coal seams of the Jastrzębie area as influenced by tectonic processes. Zeszyty Naukowe Politechniki Śląskiej - Seria Górnictwo, 229: 1-98. [In Polish, with English abstract.]
  • 106. Rice, D. D., 1993. Composition and origin of coalbed gases. In: Law, B. E. & Rice, D. D. (eds), Hydrocarbons from coal. AAPG Studies in Geology, 38: 159-184.
  • 107. Ring, U., Brandon, M. T., Willett, S. D. & Lister, G. S., 1999. Exhumation processes. In: Ring, U., Brandon, M. T, Lister, G. S. & Willett, S. D. (eds), Exhumation processes: normal faulting, ductile flow and erosion. Geological Society, London, Special Publications, 154: 1-27.
  • 108. Różkowski, A., 1995. Factors controlling the groundwater flow conditions of the Carboniferous strata in the Upper Silesian Coal Basin, Poland. Annales Societatis Geologorum Poloniae, 64: 53-66.
  • 109. Różkowski, A. & Witkowski, A., 1988. Hydrogeology of deep Carboniferous coal deposits within the Upper Silesian Coal Basin. In: Miller, S. & Murray, G. (eds), Proceedings of the third international mine water congress. Melbourne, Australia. International Mine Water Association, pp. 309-318.
  • 110. Rybicki, M., Marynowski, L., Misz-Kennan, M. & Simoneit, B. R. T., 2016. Molecular tracers preserved in Lower Jurassic ‘‘Blanowice brown coals” from southern Poland at the onset of coalification: Organic geochemical and petrological characteristics. Organic Geochemistry, 102: 77-92.
  • 111. Rybicki, M., Marynowski, L., Stukins, S. & Nejbert, K., 2017. Age and origin of the well-preserved organic matter in internal sediments from the Silesian-Cracow lead-zinc deposits, southern Poland. Economic Geology, 112: 775-798.
  • 112. Sachsenhofer, R. F., Privalov, V. A., Zhykalyak, M. V., Bueker, C., Panova, E., Rainer, T., Shymanovskyy, V. A. & Stephenson, R., 2002. The Donets Basin (Ukraine/Russia): coalification and thermal history. International Journal of Coal Geology, 49: 33-55.
  • 113. Sas-Gustkiewicz, M. & Dżułyński, S., 1998. On the origin of strata-bound Zn-Pb ores in the Upper Silesia, Poland. Annales Societatis Geologorum Poloniae, 68: 267-278
  • 114. Scheck, M., Bayer, U., Otto, V., Lamarche, J., Banka, D. & Pharaoh, T., 2002. The Elbe Fault System in North Central Europe - a basement controlled zone of crustal weakness. Tectonophysics, 360: 281-299.
  • 115. Schegg, R., 1992. Thermal maturity of the Swiss Molasse Basin: Indications for paleogeothermal anomalies? Eclogae Geologicae Helvetiae, 85: 745-764.
  • 116. Schimmelmann, A., Sessions, A. L. & Mastalerz, M., 2006. Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation. Annual Reviews of Earth and Planetary Sciences, 34: 501-533.
  • 117. Schulmann, K. & Gayer, R., 2000. A model for a continental accretionary wedge developed by oblique collision the NE Bohemian Massif. Journal of the Geological Society, 157: 401-416.
  • 118. Sechman, H., Kotarba, M. J., Kędzior, S., Dzieniewicz, M., Romanowski, T. & Góra, A., 2020a. Distribution of methane and carbon dioxide concentrations in the nearsurface zone over regional fault zones and their genetic characterization in the Pszczyna-Oświęcim area (SE part of the Upper Silesian Coal Basin, Poland). Journal of Petroleum Science and Engineering, 187, paper no. 106804 (in press). doi.org/10.1016/j.petrol.2019.106804.
  • 119. Sechman, H., Kotarba, M. J., Kędzior, S., Dzieniewicz, M., Romanowski, T. & Twaróg, A., 2019. Distribution of methane and carbon dioxide concentrations in the near surface zone, genetic implications, and evaluation of gas flux around abandoned shafts in the Jastrzębie-Pszczyna area (southern part of the Upper Silesian Coal Basin, Poland). International Journal of Coal Geology, 204: 51-69.
  • 120. Sechman, H., Kotarba, M. J., Kędzior, S., Kochman A. & Twaróg A., 2020b. Fluctuations in methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization in abandoned and active coal mines in the SW part of the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology, 227 (in press). doi.org/10.1016/j. coal.2020.103529.
  • 121. Siedlecka, A., 1964. Permian in the north-eastern border of the Upper Silesia Coal Basin. Rocznik Polskiego Towarzystwa Geologicznego, 34: 309-394.
  • 122. Sivek, M., Cáslavsky, M. & Jirásek, J., 2008. Applicability of the Hilt's law to the Czech part of the Upper Silesian Coal Basin (Czech Republic). International Journal of Coal Geology, 73: 185-195.
  • 123. Sivek, M., Dopita, M., Krùl, M., Cáslavsky, M. & Jirásek, J., 2003. Atlas of Chemical-Technological Properties of Coals in the Czech Part of the Upper Silesian Basin. Vysoká Skola Bánská, TU Ostrava.
  • 124. Sivek, M., Jirásek, J., Sedlácková, L. & Cáslavsky, M., 2010. Variation of moisture content of the bituminous coals with depth: a case study from the Czech part of the Upper Silesian Coal Basin. International Journal of Coal Geology, 84: 16-24.
  • 125. Słaby, E., Breitkreuz, C., Żaba, J., Domańska-Siuda, J., Gajdzik, K., Falenty, K. & Falenty A., 2010. Magma generation in an alternating transtensional-transpressional regime, the Kraków-Lubliniec Fault Zone, Poland. Lithos, 119: 251-268.
  • 126. Słoczyński, T. & Drozd, A., 2018. Methane potential of the Upper Silesian Coal Basin in Carboniferous strata - 4D petroleum system modelling results. Nafta-Gaz, 74: 703-714.
  • 127. Suarez-Ruiz, I., Flores, D., Mendonca, J. G. & Hackley, P. C., 2012. Review and update of the application of organic petrology: Part 1, geological applications. International Journal of Coal Geology, 99: 54-112.
  • 128. Sweeney, J. J. & Burnham, A. K., 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74: 1559-1570.
  • 129. Szafran, S. & Wagner, M., 1999. Petrologic studies of Miocene organic matter in the Carpathian Foredeep, southern Poland. Zeszyty Naukowe Politechniki Śląskiej - Seria Górnictwo 243: 131-138. [In Polish, with English abstract.]
  • 130. Szafran, S. & Wagner, M., 2000. Geotectonic causes of changes in mean reflectance of huminit/vitrinite coalified organic material in Miocene sediments of Carpathian Foredeep. Zeszyty Naukowe Politechniki Śląskiej - Seria Górnictwo, 246: 517-532. [In Polish, with English abstract.]
  • 131. Szuflicki, M., Malon, A. & Tymiński, M. (eds), 2017. Bilans zasobów złóż kopalin w Polsce. Państwowy Instytut Geologiczny, Warszawa, 480 pp. [In Polish.]
  • 132. Safanda, J., Honék, J., Weiss, G. & Buntebarth, G., 1991. Paleogeothermics in the Czechoslovak part of the Upper Silesian Basin. Geophysical Journal International, 104: 625-633.
  • 133. Środoń, J., 1995. Reconstruction of maximum paleotemperatures at present erosional surface of the Upper Silesia Coal Basin based on the composition of the illite/smectite in shales. Studia Geologica Polonica, 108: 9-19.
  • 134. Środoń, J., Banaś, M., Clauer, N. & Wójtowicz, A., 2006. K-Ar evidence for a Mesozoic thermal event superimposed on burial diagenesis of the Upper Silesia Coal Basin. Clay Minerals, 41: 669-690.
  • 135. Teichmüller, M. & Teichmüller, R., 1979. Diagenesis of coal (coalification). In: Larsen, G. & Chilingar, G. V. (eds), Diagenesis in sediments and sedimentary rocks. Developments in Sedimentology, 25: 207-246.
  • 136. Thielemann, T., Krooss, B. M., Littke, R. & Welte, D. H., 2001. Does coal mining induce methane emissions through the lithosphere/atmosphere boundary in the Ruhr Basin, Germany? Journal of Geochemical Exploration, 74: 219-231.
  • 137. Van Bergen, F. & Pagnier, H. & Krzystolik, P., 2006. Field experiment of enhanced coalbed methane-CO2 in the Upper Silesian Basin of Poland. Environmental Geosciences, 13: 201-224.
  • 138. Wagner, J., 1998. Hydrogeological characterization of the Carboniferous productive sequence in the main trough of the Upper Silesian Coal Basin. Biuletyn Państwowego Instytutu Geologicznego, 383: 55-96. [In Polish, with English abstract.]
  • 139. Waples, D., Kamata, H. & Suizu, M., 1992a. The art of maturity modeling, part 1: finding of a satisfactory model. AAPG Bulletin, 76: 31-46.
  • 140. Waples, D., Kamata, H. & Suizu, M., 1992b. The art of maturity modeling, part 2: alternative models and sensitivity analysis. AAPG Bulletin, 76: 47-66.
  • 141. Weniger, P., Francù, J., Hemza, P. & Krooss, B. M., 2012b. Investigations on the methane and carbon dioxide sorption capacity of coals from the SW Upper Silesian Coal Basin, Czech Republic. International Journal of Coal Geology, 93: 23-39.
  • 142. Weniger, P., Francù, J., Krooss, B., Buzek, F., Hemza, P. & Littke, R., 2012a. Geochemical and stable carbon isotopic composition of coal-related gases from the SW Upper Silesian Coal Basin, Czech Republic. Organic Geochemistry, 53: 153-165.
  • 143. Żaba, J., 1999. The structural evolution of Lower Paleozoic succession in the Upper Silesia Block and Małopolska Block border zone (southern Poland). Prace Państwowego Instytutu Geologicznego, 166: 1-162. [In Polish, with English summary.]
  • 144. Żelaźniewicz, A., Oberc-Dziedzic, T., Fanning, C. M., Protas, A. & Muszyński, A., 2016. Late Carboniferous-Early Permian events in the Trans-European Suture Zone: tectonic and acid magmatic evidence from Poland. Tectonophysics, 675: 227-243.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db4dfc30-3ae4-4c37-bd17-0cf3dd7dbf0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.