PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiation effect on MHD blood flow through a tapered porous stenosed artery with thermal and mass diffusion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mathematical model for MHD blood flow through a stenosed artery with Soret and Dufour effects in the presence of thermal radiation has been studied. A uniform magnetic field is applied perpendicular to the porous surface. The governing non-linear partial differential equations have been transformed into linear partial differential equations, which are solved numerically by applying the explicit finite difference method. The numerical results are presented graphically in the form of velocity, temperature and concentration profiles. The effects of various parameters such as the Reynolds number, Hartmann number, radiation parameter, Schmidt number and Prandtl number, Soret and Dufour parameter on the velocity, temperature and concentration have been examined with the help of graphs. The present results have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding/regulating blood flow and heat transfer in capillaries.
Rocznik
Strony
411--423
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
  • Department of Bioscience, CASH, Mody University of Science and Technology Lakshmangarh, Rajasthan, INDIA
autor
  • Department of Bioscience, CASH, Mody University of Science and Technology Lakshmangarh, Rajasthan, INDIA
autor
  • Department of Mathematics, Birla Institute of Technology and Science Pilani, Rajasthan, INDIA
Bibliografia
  • [1] Higashi T., Yamagishi A., Takeuchi T., Kawaguchi N., Sagawa S., Onishi S. and Date M. (1993): Orientation of erythrocytes in a strong static magnetic field. – Blood, vol.82, pp.1328-1334.
  • [2] Panja S. and Sengupta P.R. (1996): Hydromagnetic flow of Reiner Rivlin fluid between two coaxial circular cylinders with porous walls. – Comput. Math. Appl., vol.32, pp.1-43.
  • [3] Shukla J.B., Parihar R.S. and Gupta S.P. (1980): Biorheological aspects of blood flow through artery with mild stenosis: effects of peripheral layer. – Biorheology, vol.17, pp.403-410.
  • [4] Chakravarty S. and Sannigrahi A. (1999): A nonlinear mathematical model of blood flow in a constricted artery experiencing body acceleration. – Math. Comput. Model, vol.29, pp.9-25.
  • [5] Haik Y., Pai V. and Chen C.-J. (2001): Apparent viscosity of human blood in a high static magnetic field. – J. Magn. Magn. Mater., vol.225, No.1–2, pp.180-186.
  • [6] Yadav R.P., Harminder S. and Bhoopal S. (2008): Experimental studies on blood flow in stenosis arteries in presence of magnetic field. – Ultra Sci., vol.20, No.3, pp.499-504.
  • [7] Sharma B.K., Mishra A. and Gupta S. (2013): Heat and mass transfer in magneto-biofluid flow through a non-Darcian porous medium with Joule effect. – J. Eng. Phys. and Thermo Phy., vol.86, No.4, pp.716-725.
  • [8] Sinha A., Mishra J.C. and Shit G.C. (2016): Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source. – Alexandria Engineering Journal, vol.55, No.3, pp.2023-2033.
  • [9] Shit G.C. and Roy M. (2016): Effect of induced magnetic field on blood flow through a constricted channel. An analytical approach. – Journal of Mechanics in Medicine and Biology, vol.16, No.03, pp.1650030.
  • [10] Rahbari A., Fakour M., Hamzehnezhad A., Vakilabadi M.A. and Ganji D.D. (2017): Heat transfer and fluid flow of blood with nanoparticles through porous vessels in a magnetic field: A quasi-one dimensional analytical approach. – Mathematical Biosciences, vol.283, pp.38-47.
  • [11] Levin W., Sherar M.D., Cooper B., Hill R.P., Hunt J.W. and Liu F.-F. (1994): Effect of vascular occlusion on tumour temperatures during superficial hyperthermia. – International Journal of Hyperthermia, vol.10, No.4, pp.495-505.
  • [12] Sharma B.K., Sharma M., Gaur R.K. and Mishra A. (2015): Mathematical modeling of magneto pulsatile blood flow through a porous medium with a heat source. – International Journal of Applied Mechanics and Engineering, vol.20, No.2, pp.385-396.
  • [13] Sinha A. and Shit G.C. (2015): Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation. – Journal of Magnetism and Magnetic Materials, vol.378, pp.143-151.
  • [14] Sharma B.K., Sharma M. and Gaur R.K. (2015): Thermal radiation effect on inclined arterial blood flow through a non-Darcian porous medium with magnetic field. – Proceeding: First Thermal and Fluids Engineering Summer Conference, ASTFE Digital Library, vol.17, pp.2159-2168, DOI: 10.1615/TFESC1.bio.013147.
  • [15] Tripathi B. and Sharma B.K. (2018): Influence of heat and mass transfer on MHD two-phase blood flow with radiation. – AIP Conference Proceedings, vol.1975, 030009:1-9 (2018); doi: 10.1063/1.5042179.
  • [16] Gnaneswara Reddy M. (2014): Thermal radiation and chemical reaction effects on MHD mixed convective boundary layer slip flow in a porous medium with heat source and Ohmic heating. – Eur. Phys. J. Plus, 129:41.
  • [17] Sharma M. and Gaur R.K. (2017): Effect of variable viscosity on chemically reacting magneto-blood flow with heat and mass transfer. – Global Journal of Pure and Applied Mathematics, vol.13, Special Issue No.3, pp.26-35.
  • [18] Gnaneswara Reddy M. (2017). Velocity and thermal slip effects on MHD third order blood flow in an irregular channel though a porous medium with homogeneous/ heterogeneous reactions. – Nonlinear Engineering, vol. 6, No.3, pp.167-177.
  • [19] Eckert E.R.G. and Drake R.M. (1974): Analysis of Heat and Mass Transfer. – New York, NY, USA: MC Graw-Hill.
  • [20] Sharma B.K., Yadav K., Mishra N.K. and Chaudhary R.C. (2012): Soret and Dufour effects on unsteady MHD mixed convection flow past a radiative vertical porous plate embedded in a porous medium with chemical reaction. – Applied Mathematics, vol.3, No.7, pp.717-723.
  • [21] Sharma B.K., Gupta S., Krishna V.V. and Bhargavi R.J. (2014): Soret and Dufour effects on an unsteady MHD mixed convective flow past an infinite vertical plate with Ohmic dissipation and heat source. – Afrika Matematika, vol.25, No.3, pp.799-825.
  • [22] Hayat T., Shehzad S.A. and Alsaedi A. (2012): Soret and Dufour effects on the magnetohydrodynamic (MHD) flow of the Casson fluid over a stretched surface. – Appl. Math. Mech. -Engl. Ed., vol.33, No.10, pp.1301-1312. DOI 10.1007/s10483-012-1623-6.
  • [23] Hayat T., Zahir H., Tanveer A. and Alsaedi A. (2017): Soret and Dufour effects on MHD peristaltic transport of Jeffrey fluid in a curved channel with convective boundary conditions. – PLoS ONE, vol.12, No.2, e0164854. https://doi.org/10.1371/ journal.pone. 0164854.
  • [24] Sharma B.K., Sharma M. and Gaur R.K. (2018): Effect of chemical reaction on Jeffrey fluid model of blood flow through tapered artery with thermo-diffusion and diffuso-thermal gradients. – Proceeding: Third Thermal and Fluids Engineering Conference, ASTFE Digital Library, vol.18, pp.1103-1115, DOI: 10.1615/TFEC2018.bio.022113.
  • [25] Mekheimer Kh.S. and El Kot M.A. (2008): The micropolar fluid model for blood flow through a tapered artery with a stenosis. – Acta Mech. Sin., vol.24, No.6, pp.637-644.
  • [26] Nadeem S., Akbar N.S., Hayat T. and Hendi A.A. (2012): Influence of heat and mass transfer on newtonian biomagnetic fluid of blood flow through a tapered porous arteries with a stenosis. – Transp. Porous Med., vol.91, pp.81-100. DOI 10.1007/s11242-011-9834-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db4ddfe0-9319-4ac9-a671-40fc408a7ca6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.