PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selecting optimal pipeline diameters for a district heating network comprising branches and rings, using graph theory and cost minimization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Choosing the right pipeline diameter is essential for both newly designed district heating (DH) networks and existing ones undergoing upgrades. A multi-stage optimization algorithm was developed for the purpose of selecting optimal diameters of pipelines in a DH network that has a complex layout including branches and rings. The DH network was represented as a set of graphs and then as matrices, which made hydraulic and heat-and-flow calculations possible for any network layout. The optimization algorithm was developed as a Visual Basic program consisting of 37 macros. The program considers hydraulic resistances, heat-balance equations, capital expenditure for DH pipelines of 32 to 1,100 mm in diameter, and the operating cost, including the costs of heat transmission losses and DH water pumping. Microsoft Excel’s Solver tool was used to solve the non-linear optimization algorithm with constraints. To provide an example of the program’s application, the paper includes calculations used to verify the correctness of selected diameters for part of an existing DH network in a large DH system in Poland.
Rocznik
Strony
30--44
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Poland
Bibliografia
  • [1] H. Lund, B. Möller, B. V. Mathiesen, A. Dyrelund, The role of district heating in future renewable energy systems, Energy 35 (3) (2010) 1381–1390.
  • [2] D. Heating, C. C. by Country, 2005 survey, Euroheat & Power, Brussels.
  • [3] M. Pirouti, A. Bagdanavicius, J. Ekanayake, J. Wu, N. Jenkins, Energy consumption and economic analyses of a district heating network, Energy 57 (2013) 149–159.
  • [4] E. E. Directive, Directive 2012/27/eu of the european parliament and of the council of 25 october 2012 on energy efficiency, amending directives 2009/125/ec and 2010/30/eu and repealing directives 2004/8/ec and 2006/32, Official Journal, L 315 (2012) 1–56.
  • [5] T. Nussbaumer, Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction, Energy & fuels 17 (6) (2003) 1510–1521.
  • [6] E. Wetterlund, M. Söderström, Biomass gasification in district heating systems–the effect of economic energy policies, Applied Energy 87 (9) (2010) 2914–2922.
  • [7] I. Vallios, T. Tsoutsos, G. Papadakis, Design of biomass district heating systems, Biomass and bioenergy 33 (4) (2009) 659–678.
  • [8] H. Torio, D. Schmidt, Development of system concepts for improving the performance of a waste heat district heating network with exergy analysis, Energy and Buildings 42 (10) (2010) 1601–1609.
  • [9] G. Faninger, Combined solar–biomass district heating in austria, Solar Energy 69 (6) (2000) 425–435.
  • [10] D. Bauer, R. Marx, J. Nußbicker-Lux, F. Ochs, W. Heidemann, H. Müller-Steinhagen, German central solar heating plants with seasonal heat storage, Solar Energy 84 (4) (2010) 612–623.
  • [11] L. Ozgener, O. Ozgener, Monitoring of energy exergy efficiencies and exergoeconomic parameters of geothermal district heating systems (gdhss), Applied Energy 86 (9) (2009) 1704–1711.
  • [12] A. Keçeba¸s, A. Hepbasli, Conventional and advanced exergoeconomic analyses of geothermal district heating systems, Energy and Buildings 69 (2014) 434–441.
  • [13] B. Rezaie, M. A. Rosen, District heating and cooling: Review of technology and potential enhancements, Applied Energy 93 (2012) 2–10.
  • [14] P. Jie, N. Zhu, D. Li, Operation optimization of existing district heating systems, Applied Thermal Engineering 78 (2015) 278–288.
  • [15] C. Haikarainen, F. Pettersson, H. Saxén, A model for structural and operational optimization of distributed energy systems, Applied Thermal Engineering 70 (1) (2014) 211–218.
  • [16] J. Söderman, Optimisation of structure and operation of district cooling networks in urban regions, Applied thermal engineering 27 (16) (2007) 2665–2676.
  • [17] D. Dobersek, D. Goricanec, Optimisation of tree path pipe network with nonlinear optimisation method, Applied thermal engineering 29 (8) (2009) 1584–1591.
  • [18] A. Molyneaux, G. Leyland, D. Favrat, Environomic multi-objective optimization of a district heating network considering centralized and decentralized heat pumps, Energy 35 (2) (2010) 751–758.
  • [19] A. Benonysson, B. Bøhm, H. F. Ravn, Operational optimization in a district heating system, Energy conversion and management 36 (5) (1995) 297–314.
  • [20] C. Bordin, A. Gordini, D. Vigo, An optimization approach for district heating strategic network design, European Journal of Operational Research 252 (1) (2016) 296–307.
  • [21] H. Li, S. Svendsen, District heating network design and configuration optimization with genetic algorithm, Journal of Sustainable Development of Energy, Water and Environment Systems 1 (4) (2013) 291–303.
  • [22] G. Phetteplace, Optimal design of piping systems for district heating, Tech. rep., COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH (1995).
  • [23] N. Yildirim, M. Toksoy, G. Gokcen, Piping network design of geothermal district heating systems: Case study for a university campus, Energy 35 (8) (2010) 3256–3262.
  • [24] A. Hlebnikov, A. Siirde, A. Paist, Basics of optimal design of district heating pipelines diameters and design examples of estonian old nonoptimised district heating networks, Doctoral school of energy-and geotechnology, January 15–20, Kuressaare, Estonia (2007) 149–153.
  • [25] A. Hlebnikov, N. Dementjeva, A. Siirde, Optimization of narva district heating network and analysis of competitiveness of oil shale chp building in narva., Oil Shale 26.
  • [26] P. Ulloa, Potential for combined heat and power and district heating and cooling from waste-to-energy facilities in the us–learning from the danish experience, Columbia University: Fu Foundation of School of Engineering and Applied Science.
  • [27] K. Çomakli, B. Yüksel, Ö. Çomakli, Evaluation of energy and exergy losses in district heating network, Applied thermal engineering 24 (7) (2004) 1009–1017.
  • [28] A. Smyk, Z. Pietrzyk, Straty przenikania ciepła w sieci ciepłowniczej w różnych warunkach eksploatacyjnych, Rynek Energii (6) (2012) 46–51.
  • [29] A. Smyk, Z. Pietrzyk, Dobór średnicy rurociągów w sieci ciepłowniczej z uwzględnieniem optymalnej prędkości wody sieciowej, Rynek Energii (6) (2011) 98–105.
  • [30] H. Tol, S. Svendsen, Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in roskilde, denmark, Energy 38 (1) (2012) 276–290.
  • [31] T. Nussbaumer, S. Thalmann, Influence of system design on heat distribution costs in district heating, Energy 101 (2016) 496–505.
  • [32] M. Kayfeci, Determination of energy saving and optimum insulation thicknesses of the heating piping systems for different insulation materials, Energy and Buildings 69 (2014) 278–284.
  • [33] A. Keçebas, M. A. Alkan, M. Bayhan, Thermo-economic analysis of pipe insulation for district heating piping systems, Applied Thermal Engineering 31 (17) (2011) 3929–3937.
  • [34] R. Lund, S. Mohammadi, Choice of insulation standard for pipe networks in 4 th generation district heating systems, Applied Thermal Engineering 98 (2016) 256–264.
  • [35] C. Snoek, L. Yang, T. Onno, S. Frederiksen, H. Korsman, Optimization of district heating systems by maximizing building heating system temperature differences, IEA District Heating and Cooling report (2002) S2.
  • [36] O. Gudmundsson, A. Nielsen, J. Iversen, The effects of lowering the network temperatures in existing networks, in: DHC13, the 13th international symposium on district heating and cooling, September 3rd to, 2012, pp. 116–121.
  • [37] H. Gadd, S. Werner, Achieving low return temperatures from district heating substations, Applied energy 136 (2014) 59–67.
  • [38] H. Zinko, B. Bøhm, H. Kristjansson, U. Ottosson, M. Rama, K. Sipila, District heating distribution in areas with low heat demand density, International Energy Agency.
  • [39] H. A. Abdel-Gawad, Optimal design of pipe networks by an improved genetic algorithm, in: Proceedings of the Sixth International Water Technology Conference IWTC, 2001, pp. 23–25.
  • [40] O. Fujiwara, B. Jenchaimahakoon, N. Edirishinghe, A modified linear programming gradient method for optimal design of looped water distribution networks, Water Resources Research 23 (6) (1987) 977–982.
  • [41] K. E. Lansey, L.W. Mays, Optimization model for water distribution system design, Journal of Hydraulic Engineering 115 (10) (1989) 1401–1418.
  • [42] E. Mathews, H. Brenkman, P. Köhler, Optimization of pipe networks using standardized pipes, R&D Journal 10 (2) (1994) 45–51.
  • [43] T. Fang, R. Lahdelma, Genetic optimization of multi-plant heat production in district heating networks, Applied Energy 159 (2015) 610–619.
  • [44] A. Keçebas, M. A. Alkan, ˙I. Yabanova, M. Yumurtacı, Energetic and economic evaluations of geothermal district heating systems by using ann, Energy policy 56 (2013) 558–567.
  • [45] A. Bejan, Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes, Journal of Applied Physics 79 (3) (1996) 1191–1218.
  • [46] R. Laskowski, A. Rusowicz, A. Smyk, Weryfikacja średnicy rurek skraplacza na podstawie minimalizacji generacji entropii, Rynek Energii (1) (2015) 71–75.
  • [47] Z. Kolenda, Exergy analysis and the method of minimizing the generation of entropy, Opportunities to improve imperfections thermodynamic processes in the electricity supply (in Polish), PAN Publisher.
  • [48] J. Szargut, Problems of thermodynamics optimization, Archives of Thermodynamics 19 (3/4) (1998) 85–94
  • [49] R. Laskowski, A. Rusowicz, A. Grzebielec, Estimation of a tube diameter in a ‘church window’condenser based on entropy generation minimization, Archives of Thermodynamics 36 (3) (2015) 49–59.
  • [50] E. Mathews, P. Köhler, A numerical optimization procedure for complex pipe and duct network design, International Journal of Numerical Methods for Heat & Fluid Flow 5 (5) (1995) 445–457.
  • [51] D. Connolly, B. V. Mathiesen, P. A. Østergaard, B. Möller, S. Nielsen, H. Lund, . T. D., Heat roadmap europe, Tech. rep., Department of Development and Planning, Aalborg University. (2013).
  • [52] J. Murat, A. Smyk, Dobór optymalnej średnicy rurociągów rozgałęźno-pierścieniowej sieci w systemie ciepłowniczym zasilanym z elektrociepłowni, Ciepłownictwo, Ogrzewnictwo, Wentylacja 46 (4) (2015)127–134.
  • [53] J. Murat, A. Smyk, Dobór średnicy rurociągów w układzie rozgałęźno-pierścieniowym dla przykładowych struktur sieci ciepłowniczej, Instal (9) (2015) 13–19.
  • [54] Polish Standard PN-EN 13941: Design and installation of preinsulated bonded pipe systems for district heating, Warsaw, (2005).
  • [55] T. S. Wasilewski W, The mathematical model for the optimization of thermodynamic parameters and geometric heating systems, Warsaw University of Technology, Faculty of Sanitary and Water Engineering, Institute of Heating and Ventilation, City Warsaw 1984.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db4d8796-8855-45cb-b4cf-f03a23ba28f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.