PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vehicle speed determination with inductive-loop technology and fast and accurate fractional time delay estimation by DFT

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inductive loop (IL) sensors are permanently installed in road to create output signals for the evaluation of vehicle magnetic profiles (VMPs) as vehicles pass over them. VMPs are acquired using a multi-frequency impedance measurement (MFIM) system equipped with advanced electronic, signal processing, and data management capabilities. Vehicle speed is calculated by measuring the time shift (delay, lag) between VMPs obtained from two distant IL sensors. The cross-correlation sequence (CCS) estimate is a widely accepted method for estimating time shifts that are integer multiples of the sampling period, i.e., the time resolution of the CCS is limited by the sampling period. In this paper, we present a fully operational MFIM system equipped with two wide and two slim IL sensors. We apply the Discrete Fourier Transform (DFT) to estimate fractional time shifts, i.e. we obtain a time resolution higher than the sampling period. Field measurement signals demonstrate that the proposed application of the DFT for fractional shift estimation offers higher accuracy, lower computational complexity, and better noise immunity compared to the CCS-based estimation. For short-duration signals, the DFT-based shift estimation is unbiased, while the CCS is a biased time-shift estimator.
Rocznik
Strony
781--796
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr., wzory
Twórcy
  • AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Measurement and Electronics, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Measurement and Electronics, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Marszałek, Z., & Duda, K. (2020). Multifrequency vector measurement system for reliable vehicle magnetic profile assessment, Sensors, 20(17), 1-15. https://doi.org/10.3390/s20174933
  • [2] Marszałek, Z., Gawędzki, W., & Duda, K. (2021). A reliable moving vehicle axle-to-axle distance measurement system based on multi-frequency impedance measurement of a slim inductive-loop sensor. Measurement, 169(108525), 1-9, https://doi.org/10.1016/j.measurement.2020.108525
  • [3] Marszałek, Z., Duda, K., Piwowar, P., Stencel, M., Żegleń, T., & Izydorczyk, J. (2023). Load estimation of moving passenger cars using inductive-loop technology. Sensors, 23(4), 1-19. https://doi.org/10.3390/s23042063
  • [4] Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308-6325. https://doi.org/10.1109/JSTARS.2020.3026724
  • [5] Jeng, S.T.C., & Ritchie, S.G. (2008). Real-time vehicle classification using inductive loop signature data. Transportation Research Record: Journal of the Transportation Research Board, 2086(1), 8-22. https://doi.org/10.3141/2086-02
  • [6] Ki, Y.K., Baik, & D.K. (2006). Vehicle-classification algorithm for single loop detectors using neural networks. IEEE Transactions on Vehicular Technology, 55, 1704-1711. https://doi.org/10.1109/TVT.2006.883726
  • [7] Mosa, A.H., Kyamakya, K., Junghans, R., Ali, M., Machot, F.A., & Gutmann, M. (2016). Soft radial basis cellular neural network (SRB-CNN) based robust low-cost truck detection using a single presence detection sensor. Transportation Research Part C: Emerging Technologies, 73, 105-127. https://doi.org/10.1016/j.trc.2016.10.016
  • [8] Sassella, A., Abbracciavento, F., Formentin, S., Bianchessi, A. G., & Savaresi, S. M. (2023, May). On queue length estimation in urban traffic intersections via inductive loops. In 2023 American Control Conference (ACC) (pp. 1135-1140). IEEE. https://doi.org/10.23919/ACC55779.2023.10156258
  • [9] Taghvaeeyan, S., & Rajamani, R. (2014). Portable roadside sensors for vehicle counting classification and speed measurement. IEEE Transactions on Intelligent Transportation Systems, 15(1), 73-83. https://doi.org/10.1109/TITS.2013.2273876
  • [10] Balid, W., Tafish, H., & Refai, H.H. (2018). Intelligent vehicle counting and classification sensor for real-time traffic surveillance. IEEE Transactions on Intelligent Transportation Systems, 19(6), 1784-1794. https://doi.org/10.1109/TITS.2017.2741507
  • [11] Markevicius, V., Navikas, D., Idźkowski, A., Valinevicius, A., Zilys, M., Janeliauskas, A., Waleńdziuk, W., & Andriukaitis, D. (2021). An effective method of vehicle speed evaluation in systems using anisotropic magneto-resistive sensors. IEEE Intelligent Transportation Systems Magazine, 13(2), 142-151. https://doi.org/10.1109/MITS.2018.2889693
  • [12] Miklusis, D., Markevicius, V., Navikas, D., Cepenas, M., Balamutas, J., Valinevicius, A., Zilys, M., Cuinas, I., Klimenta, D., & Andriukaitis, D. (2021). Research of distorted vehicle magnetic signatures recognitions, for length estimation in real traffic conditions. Sensors, 21(23), 7872. https://doi.org/10.3390/s21237872
  • [13] Yao R., & Uchiyama T. (2024). Analysis of magnetic signatures for vehicle detection using dual-axis magneto-impedance sensors. IEEE Sensors Journal, 24(6), 8721-8730. https://doi.org/10.1109/JSEN.2024.3357852
  • [14] Zhang, C., Shen, S., Huang, H., & Wang, L. (2021). Estimation of the vehicle speed using cross-correlation algorithms and MEMS wireless sensors. Sensors, 21(5), 1721. https://doi.org/10.3390/s21051721
  • [15] U. D. of Transportation. (2016). Traffic Monitoring Guide. Federal Highway Administration (FHWA). https://www.fhwa.dot.gov/policyinformation/tmguide/tmg_fhwa_pl_17_003.pdf
  • [16] Gholamhosseinian, A., & Seitz, J. (2021). Vehicle Classification in Intelligent Transport Systems: An Overview, Methods and Software Perspective. IEEE Open Journal of Intelligent Transportation Systems, 2, 173-194. https://doi.org/10.1109/ojits.2021.3096756
  • [17] Maczyński, A., Brzozowski, K., & Ryguła, A. (2021). Analysis and Prediction of Vehicles Speed in Free-Flow Traffic. Transport and Telecommunication Journal, 22(3), 266-277. https://doi.org/10.2478/ttj-2021-0020
  • [18] Knapp, C., & Carter, G. (1976). The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(4), 320-327. https://doi.org/10.1109/tassp.1976.1162830
  • [19] Carter, G. C. (1987). Coherence and time delay estimation. Proceedings of the IEEE, 75(2), 236-255. https://doi.org/10.1109/proc.1987.13723
  • [20] Chen, J., Benesty, J., & Huang, Y. (Arden). (2005). Performance of GCC- and AMDF-Based Time-Delay Estimation in Practical Reverberant Environments. EURASIP Journal on Advances in Signal Processing, 2005(1). https://doi.org/10.1155/asp.2005.25
  • [21] Shaswary, E., Xu, Y., & Tavakkoli, J. (2016). Performance study of a new time-delay estimation algorithm in ultrasonic echo signals and ultrasound elastography. Ultrasonics, 69, 11-18. https://doi.org/10.1016/j.ultras.2016.03.002
  • [22] Velickovic, Z. S., & Pavlovic, V. D. (2013). The Performance of the Modified GCC Technique for Differential Time Delay Estimation in the Cooperative Sensor Network. Electronics and Electrical Engineering, 19(8). https://doi.org/10.5755/j01.eee.19.8.2445
  • [23] Xiaoming Lai, & Torp, H. (1999). Interpolation methods for time-delay estimation using cross-correlation method for blood velocity measurement. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 46(2), 277-290. https://doi.org/10.1109/58.753016
  • [24] Gontarz, S., Szulim, P., Seńko, J., & Dybała, J. (2015). Use of magnetic monitoring of vehicles for proactive strategy development. Transportation Research Part C: Emerging Technologies, 52, 102-115. https://doi.org/10.1016/j.trc.2014.12.007
  • [25] Shimamura, T., & Kobayashi, H. (2001). Weighted autocorrelation for pitch extraction of noisy speech. IEEE Transactions on Speech and Audio Processing, 9(7), 727-730. https://doi.org/10.1109/89.952490
  • [26] Kim, D.-H., Choi, K.-H., Li, K.-J., & Lee, Y.-S. (2014). Performance of vehicle speed estimation using wireless sensor networks: a region-based approach. The Journal of Supercomputing, 71(6), 2101-2120. https://doi.org/10.1007/s11227-014-1306-7
  • [27] Zhu, H., & Yu, F. (2016). A Cross-Correlation Technique for Vehicle Detections in Wireless Magnetic Sensor Network. IEEE Sensors Journal, 16(11), 4484-4494. https://doi.org/10.1109/jsen.2016.2523601
  • [28] Liu, W., Li, L., Li, L., Jiao, H., Qu, J., & Sun, G. (2024). Velocity Estimation of Underwater Vehicle Based on Abnormal Magnetic Field Waveform. IEEE Sensors Journal, 24(1), 367-376. https://doi.org/10.1109/jsen.2023.3324431
  • [29] Wang, Z., Song, R., Chen, W., Wang, J., Wang, P., Ming, Z., & Zhang, Z. (2024). A general method for trace substance detection based on cross-correlation theory. Sensors and Actuators B: Chemical, 415, 135987. https://doi.org/10.1016/j.snb.2024.135987
  • [30] Duda, K., Zieliński, T. P., & Barczentewicz, S. H. (2016). Perfectly Flat-Top and Equiripple Flat-Top Cosine Windows. IEEE Transactions on Instrumentation and Measurement, 65(7), 1558-1567. https://doi.org/10.1109/tim.2016.2534398
  • [31] Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1999). Discrete-Time Signal Processing, 2nd Edition. Prentice-Hall.
  • [32] Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51-83. https://doi.org/10.1109/proc.1978.10837
  • [33] Blok, M., & Sac, M. (2014). Variable Fractional Delay Filter Design Using a Symmetric Window. Circuits, Systems, and Signal Processing, 33(10), 3223-3250. https://doi.org/10.1007/s00034-014-9803-8
Uwagi
Research project supported by program “Excellence Initiative - Research University” for the AGH University of Science and Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db48cfff-8705-4e06-b4c0-dabc205efef2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.